# main.py from utils.preprocessing import preprocess_data from models.fraud_detection_model import build_model from utils.flexflow_integration import FlexFlowIntegration from utils.feature_engineering import feature_engineering from utils.encryption import encrypt_data, decrypt_data from utils.lora_integration import LoRaIntegration from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score # Example Usage data_path = 'data/dataset.csv' X_train, X_test, y_train, y_test = preprocess_data(data_path) model = build_model(X_train.shape[1]) model.fit(X_train, y_train, epochs=10, batch_size=32) # Save the entire model model.save('models/fraud_detection_model.h5') # Example FlexFlow Integration data_dict = {"score": 0.8, "timestamp": "2023-01-01 12:34:56"} FlexFlowIntegration.encrypt_and_send(data_dict) received_data = FlexFlowIntegration.receive_and_decrypt() if received_data: result = FlexFlowIntegration.execute_model(received_data) print("Model Result:", result) # Example Evaluation (assuming y_true and y_pred are defined) y_pred = model.predict_classes(X_test) evaluate_model(y_test, y_pred)