# models/fraud_detection_model.py from tensorflow.keras.models import load_model def load_fraud_detection_model(model_path): return load_model(model_path) def predict_fraud(model, data): # Placeholder for model prediction logic # Replace with actual prediction logic return model.predict_classes(data) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout def build_model(input_dim): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model