# utils/preprocessing.py import pandas as pd from sklearn.preprocessing import StandardScaler from utils import feature_engineering def preprocess_data_for_streamlit(data_path): df = pd.read_csv(data_path) df = feature_engineering(df) # Assuming feature_engineering is defined X = df.drop('label', axis=1) scaler = StandardScaler() X_scaled = scaler.fit_transform(X) return df, X_scaled # utils/preprocessing.py import pandas as pd from sklearn.model_selection import train_test_split def preprocess_data(data_path, test_size=0.2, random_state=42): df = pd.read_csv(data_path) df = feature_engineering(df) X = df.drop('label', axis=1) y = df['label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) return X_train_scaled, X_test_scaled, y_train, y_test