Spaces:
Runtime error
Runtime error
| from typing import Optional | |
| import torch | |
| from PIL import Image | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, UNet2DConditionModel | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.utils import ( | |
| deprecate, | |
| ) | |
| class EDICTPipeline(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: DDIMScheduler, | |
| mixing_coeff: float = 0.93, | |
| leapfrog_steps: bool = True, | |
| ): | |
| self.mixing_coeff = mixing_coeff | |
| self.leapfrog_steps = leapfrog_steps | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def _encode_prompt( | |
| self, prompt: str, negative_prompt: Optional[str] = None, do_classifier_free_guidance: bool = False | |
| ): | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| prompt_embeds = self.text_encoder(text_inputs.input_ids.to(self.device)).last_hidden_state | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=self.device) | |
| if do_classifier_free_guidance: | |
| uncond_tokens = "" if negative_prompt is None else negative_prompt | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device)).last_hidden_state | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| def denoise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor): | |
| x = self.mixing_coeff * x + (1 - self.mixing_coeff) * y | |
| y = self.mixing_coeff * y + (1 - self.mixing_coeff) * x | |
| return [x, y] | |
| def noise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor): | |
| y = (y - (1 - self.mixing_coeff) * x) / self.mixing_coeff | |
| x = (x - (1 - self.mixing_coeff) * y) / self.mixing_coeff | |
| return [x, y] | |
| def _get_alpha_and_beta(self, t: torch.Tensor): | |
| # as self.alphas_cumprod is always in cpu | |
| t = int(t) | |
| alpha_prod = self.scheduler.alphas_cumprod[t] if t >= 0 else self.scheduler.final_alpha_cumprod | |
| return alpha_prod, 1 - alpha_prod | |
| def noise_step( | |
| self, | |
| base: torch.Tensor, | |
| model_input: torch.Tensor, | |
| model_output: torch.Tensor, | |
| timestep: torch.Tensor, | |
| ): | |
| prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps | |
| alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep) | |
| alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep) | |
| a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5 | |
| b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5 | |
| next_model_input = (base - b_t * model_output) / a_t | |
| return model_input, next_model_input.to(base.dtype) | |
| def denoise_step( | |
| self, | |
| base: torch.Tensor, | |
| model_input: torch.Tensor, | |
| model_output: torch.Tensor, | |
| timestep: torch.Tensor, | |
| ): | |
| prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps | |
| alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep) | |
| alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep) | |
| a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5 | |
| b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5 | |
| next_model_input = a_t * base + b_t * model_output | |
| return model_input, next_model_input.to(base.dtype) | |
| def decode_latents(self, latents: torch.Tensor): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| return image | |
| def prepare_latents( | |
| self, | |
| image: Image.Image, | |
| text_embeds: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| guidance_scale: float, | |
| generator: Optional[torch.Generator] = None, | |
| ): | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| image = image.to(device=self.device, dtype=text_embeds.dtype) | |
| latent = self.vae.encode(image).latent_dist.sample(generator) | |
| latent = self.vae.config.scaling_factor * latent | |
| coupled_latents = [latent.clone(), latent.clone()] | |
| for i, t in tqdm(enumerate(timesteps), total=len(timesteps)): | |
| coupled_latents = self.noise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1]) | |
| # j - model_input index, k - base index | |
| for j in range(2): | |
| k = j ^ 1 | |
| if self.leapfrog_steps: | |
| if i % 2 == 0: | |
| k, j = j, k | |
| model_input = coupled_latents[j] | |
| base = coupled_latents[k] | |
| latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds).sample | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| base, model_input = self.noise_step( | |
| base=base, | |
| model_input=model_input, | |
| model_output=noise_pred, | |
| timestep=t, | |
| ) | |
| coupled_latents[k] = model_input | |
| return coupled_latents | |
| def __call__( | |
| self, | |
| base_prompt: str, | |
| target_prompt: str, | |
| image: Image.Image, | |
| guidance_scale: float = 3.0, | |
| num_inference_steps: int = 50, | |
| strength: float = 0.8, | |
| negative_prompt: Optional[str] = None, | |
| generator: Optional[torch.Generator] = None, | |
| output_type: Optional[str] = "pil", | |
| ): | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| image = self.image_processor.preprocess(image) | |
| base_embeds = self._encode_prompt(base_prompt, negative_prompt, do_classifier_free_guidance) | |
| target_embeds = self._encode_prompt(target_prompt, negative_prompt, do_classifier_free_guidance) | |
| self.scheduler.set_timesteps(num_inference_steps, self.device) | |
| t_limit = num_inference_steps - int(num_inference_steps * strength) | |
| fwd_timesteps = self.scheduler.timesteps[t_limit:] | |
| bwd_timesteps = fwd_timesteps.flip(0) | |
| coupled_latents = self.prepare_latents(image, base_embeds, bwd_timesteps, guidance_scale, generator) | |
| for i, t in tqdm(enumerate(fwd_timesteps), total=len(fwd_timesteps)): | |
| # j - model_input index, k - base index | |
| for k in range(2): | |
| j = k ^ 1 | |
| if self.leapfrog_steps: | |
| if i % 2 == 1: | |
| k, j = j, k | |
| model_input = coupled_latents[j] | |
| base = coupled_latents[k] | |
| latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=target_embeds).sample | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| base, model_input = self.denoise_step( | |
| base=base, | |
| model_input=model_input, | |
| model_output=noise_pred, | |
| timestep=t, | |
| ) | |
| coupled_latents[k] = model_input | |
| coupled_latents = self.denoise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1]) | |
| # either one is fine | |
| final_latent = coupled_latents[0] | |
| if output_type not in ["latent", "pt", "np", "pil"]: | |
| deprecation_message = ( | |
| f"the output_type {output_type} is outdated. Please make sure to set it to one of these instead: " | |
| "`pil`, `np`, `pt`, `latent`" | |
| ) | |
| deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) | |
| output_type = "np" | |
| if output_type == "latent": | |
| image = final_latent | |
| else: | |
| image = self.decode_latents(final_latent) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| return image | |