Spaces:
Runtime error
Runtime error
| # Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| BertModel, | |
| BertTokenizer, | |
| CLIPImageProcessor, | |
| MT5Tokenizer, | |
| T5EncoderModel, | |
| ) | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, HunyuanDiT2DModel | |
| from diffusers.models.embeddings import get_2d_rotary_pos_embed | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import ( | |
| StableDiffusionSafetyChecker, | |
| ) | |
| from diffusers.schedulers import DDPMScheduler | |
| from diffusers.utils import ( | |
| deprecate, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import FlowMatchEulerDiscreteScheduler | |
| >>> from diffusers.utils import load_image | |
| >>> from PIL import Image | |
| >>> from torchvision import transforms | |
| >>> from pipeline_hunyuandit_differential_img2img import HunyuanDiTDifferentialImg2ImgPipeline | |
| >>> pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained( | |
| >>> "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16 | |
| >>> ).to("cuda") | |
| >>> source_image = load_image( | |
| >>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png" | |
| >>> ) | |
| >>> map = load_image( | |
| >>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png" | |
| >>> ) | |
| >>> prompt = "a green pear" | |
| >>> negative_prompt = "blurry" | |
| >>> image = pipe( | |
| >>> prompt=prompt, | |
| >>> negative_prompt=negative_prompt, | |
| >>> image=source_image, | |
| >>> num_inference_steps=28, | |
| >>> guidance_scale=4.5, | |
| >>> strength=1.0, | |
| >>> map=map, | |
| >>> ).images[0] | |
| ``` | |
| """ | |
| STANDARD_RATIO = np.array( | |
| [ | |
| 1.0, # 1:1 | |
| 4.0 / 3.0, # 4:3 | |
| 3.0 / 4.0, # 3:4 | |
| 16.0 / 9.0, # 16:9 | |
| 9.0 / 16.0, # 9:16 | |
| ] | |
| ) | |
| STANDARD_SHAPE = [ | |
| [(1024, 1024), (1280, 1280)], # 1:1 | |
| [(1024, 768), (1152, 864), (1280, 960)], # 4:3 | |
| [(768, 1024), (864, 1152), (960, 1280)], # 3:4 | |
| [(1280, 768)], # 16:9 | |
| [(768, 1280)], # 9:16 | |
| ] | |
| STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE] | |
| SUPPORTED_SHAPE = [ | |
| (1024, 1024), | |
| (1280, 1280), # 1:1 | |
| (1024, 768), | |
| (1152, 864), | |
| (1280, 960), # 4:3 | |
| (768, 1024), | |
| (864, 1152), | |
| (960, 1280), # 3:4 | |
| (1280, 768), # 16:9 | |
| (768, 1280), # 9:16 | |
| ] | |
| def map_to_standard_shapes(target_width, target_height): | |
| target_ratio = target_width / target_height | |
| closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio)) | |
| closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height)) | |
| width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx] | |
| return width, height | |
| def get_resize_crop_region_for_grid(src, tgt_size): | |
| th = tw = tgt_size | |
| h, w = src | |
| r = h / w | |
| # resize | |
| if r > 1: | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, | |
| generator: Optional[torch.Generator] = None, | |
| sample_mode: str = "sample", | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline): | |
| r""" | |
| Differential Pipeline for English/Chinese-to-image generation using HunyuanDiT. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by | |
| ourselves) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use | |
| `sdxl-vae-fp16-fix`. | |
| text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| HunyuanDiT uses a fine-tuned [bilingual CLIP]. | |
| tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]): | |
| A `BertTokenizer` or `CLIPTokenizer` to tokenize text. | |
| transformer ([`HunyuanDiT2DModel`]): | |
| The HunyuanDiT model designed by Tencent Hunyuan. | |
| text_encoder_2 (`T5EncoderModel`): | |
| The mT5 embedder. Specifically, it is 't5-v1_1-xxl'. | |
| tokenizer_2 (`MT5Tokenizer`): | |
| The tokenizer for the mT5 embedder. | |
| scheduler ([`DDPMScheduler`]): | |
| A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
| _optional_components = [ | |
| "safety_checker", | |
| "feature_extractor", | |
| "text_encoder_2", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "tokenizer", | |
| ] | |
| _exclude_from_cpu_offload = ["safety_checker"] | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "prompt_embeds_2", | |
| "negative_prompt_embeds_2", | |
| ] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: BertModel, | |
| tokenizer: BertTokenizer, | |
| transformer: HunyuanDiT2DModel, | |
| scheduler: DDPMScheduler, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| requires_safety_checker: bool = True, | |
| text_encoder_2=T5EncoderModel, | |
| tokenizer_2=MT5Tokenizer, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| text_encoder_2=text_encoder_2, | |
| ) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, | |
| do_normalize=False, | |
| do_convert_grayscale=True, | |
| ) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| self.default_sample_size = ( | |
| self.transformer.config.sample_size | |
| if hasattr(self, "transformer") and self.transformer is not None | |
| else 128 | |
| ) | |
| # copied from diffusers.pipelines.huanyuandit.pipeline_huanyuandit.HunyuanDiTPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| device: torch.device = None, | |
| dtype: torch.dtype = None, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| max_sequence_length: Optional[int] = None, | |
| text_encoder_index: int = 0, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| dtype (`torch.dtype`): | |
| torch dtype | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the prompt. Required when `prompt_embeds` is passed directly. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. | |
| max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. | |
| text_encoder_index (`int`, *optional*): | |
| Index of the text encoder to use. `0` for clip and `1` for T5. | |
| """ | |
| if dtype is None: | |
| if self.text_encoder_2 is not None: | |
| dtype = self.text_encoder_2.dtype | |
| elif self.transformer is not None: | |
| dtype = self.transformer.dtype | |
| else: | |
| dtype = None | |
| if device is None: | |
| device = self._execution_device | |
| tokenizers = [self.tokenizer, self.tokenizer_2] | |
| text_encoders = [self.text_encoder, self.text_encoder_2] | |
| tokenizer = tokenizers[text_encoder_index] | |
| text_encoder = text_encoders[text_encoder_index] | |
| if max_sequence_length is None: | |
| if text_encoder_index == 0: | |
| max_length = 77 | |
| if text_encoder_index == 1: | |
| max_length = 256 | |
| else: | |
| max_length = max_sequence_length | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_attention_mask = text_inputs.attention_mask.to(device) | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=prompt_attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_attention_mask = uncond_input.attention_mask.to(device) | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=negative_prompt_attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| prompt_embeds_2=None, | |
| negative_prompt_embeds_2=None, | |
| prompt_attention_mask_2=None, | |
| negative_prompt_attention_mask_2=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is None and prompt_embeds_2 is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
| if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: | |
| raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
| if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: | |
| raise ValueError( | |
| "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: | |
| if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: | |
| raise ValueError( | |
| "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" | |
| f" {negative_prompt_embeds_2.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| if hasattr(self.scheduler, "set_begin_index"): | |
| self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
| return timesteps, num_inference_steps - t_start | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| image, | |
| timestep, | |
| dtype, | |
| device, | |
| generator=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| image = image.to(device=device, dtype=dtype) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| init_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| init_latents = init_latents * self.vae.config.scaling_factor | |
| if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| deprecation_message = ( | |
| f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | |
| " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
| " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
| " your script to pass as many initial images as text prompts to suppress this warning." | |
| ) | |
| deprecate( | |
| "len(prompt) != len(image)", | |
| "1.0.0", | |
| deprecation_message, | |
| standard_warn=False, | |
| ) | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: PipelineImageInput = None, | |
| strength: float = 0.8, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: Optional[int] = 50, | |
| timesteps: List[int] = None, | |
| sigmas: List[float] = None, | |
| guidance_scale: Optional[float] = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_embeds_2: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds_2: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[ | |
| Union[ | |
| Callable[[int, int, Dict], None], | |
| PipelineCallback, | |
| MultiPipelineCallbacks, | |
| ] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = (1024, 1024), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| use_resolution_binning: bool = True, | |
| map: PipelineImageInput = None, | |
| denoising_start: Optional[float] = None, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation with HunyuanDiT. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both | |
| numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list | |
| or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a | |
| list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image | |
| latents as `image`, but if passing latents directly it is not encoded again. | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
| starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
| on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
| process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
| essentially ignores `image`. | |
| height (`int`): | |
| The height in pixels of the generated image. | |
| width (`int`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter is modulated by `strength`. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| prompt_embeds_2 (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| negative_prompt_embeds_2 (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the prompt. Required when `prompt_embeds` is passed directly. | |
| prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
| Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. | |
| negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
| A callback function or a list of callback functions to be called at the end of each denoising step. | |
| callback_on_step_end_tensor_inputs (`List[str]`, *optional*): | |
| A list of tensor inputs that should be passed to the callback function. If not defined, all tensor | |
| inputs will be passed. | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise | |
| Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): | |
| The original size of the image. Used to calculate the time ids. | |
| target_size (`Tuple[int, int]`, *optional*): | |
| The target size of the image. Used to calculate the time ids. | |
| crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): | |
| The top left coordinates of the crop. Used to calculate the time ids. | |
| use_resolution_binning (`bool`, *optional*, defaults to `True`): | |
| Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest | |
| standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960, | |
| 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`. | |
| denoising_start (`float`, *optional*): | |
| When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and | |
| it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, | |
| strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | |
| is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image | |
| Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. default height and width | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| height = int((height // 16) * 16) | |
| width = int((width // 16) * 16) | |
| if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE: | |
| width, height = map_to_standard_shapes(width, height) | |
| height = int(height) | |
| width = int(width) | |
| logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}") | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| prompt_embeds_2, | |
| negative_prompt_embeds_2, | |
| prompt_attention_mask_2, | |
| negative_prompt_attention_mask_2, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| dtype=self.transformer.dtype, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| max_sequence_length=77, | |
| text_encoder_index=0, | |
| ) | |
| ( | |
| prompt_embeds_2, | |
| negative_prompt_embeds_2, | |
| prompt_attention_mask_2, | |
| negative_prompt_attention_mask_2, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| dtype=self.transformer.dtype, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds_2, | |
| negative_prompt_embeds=negative_prompt_embeds_2, | |
| prompt_attention_mask=prompt_attention_mask_2, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask_2, | |
| max_sequence_length=256, | |
| text_encoder_index=1, | |
| ) | |
| # 4. Preprocess image | |
| init_image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
| map = self.mask_processor.preprocess( | |
| map, | |
| height=height // self.vae_scale_factor, | |
| width=width // self.vae_scale_factor, | |
| ).to(device) | |
| # 5. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, sigmas | |
| ) | |
| # begin diff diff change | |
| total_time_steps = num_inference_steps | |
| # end diff diff change | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| init_image, | |
| latent_timestep, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| ) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. create image_rotary_emb, style embedding & time ids | |
| grid_height = height // 8 // self.transformer.config.patch_size | |
| grid_width = width // 8 // self.transformer.config.patch_size | |
| base_size = 512 // 8 // self.transformer.config.patch_size | |
| grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size) | |
| image_rotary_emb = get_2d_rotary_pos_embed( | |
| self.transformer.inner_dim // self.transformer.num_heads, | |
| grid_crops_coords, | |
| (grid_height, grid_width), | |
| ) | |
| style = torch.tensor([0], device=device) | |
| target_size = target_size or (height, width) | |
| add_time_ids = list(original_size + target_size + crops_coords_top_left) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) | |
| prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) | |
| prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) | |
| add_time_ids = torch.cat([add_time_ids] * 2, dim=0) | |
| style = torch.cat([style] * 2, dim=0) | |
| prompt_embeds = prompt_embeds.to(device=device) | |
| prompt_attention_mask = prompt_attention_mask.to(device=device) | |
| prompt_embeds_2 = prompt_embeds_2.to(device=device) | |
| prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) | |
| add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat( | |
| batch_size * num_images_per_prompt, 1 | |
| ) | |
| style = style.to(device=device).repeat(batch_size * num_images_per_prompt) | |
| # 9. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| # preparations for diff diff | |
| original_with_noise = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| init_image, | |
| timesteps, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| ) | |
| thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps | |
| thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device) | |
| masks = map.squeeze() > (thresholds + (denoising_start or 0)) | |
| # end diff diff preparations | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # diff diff | |
| if i == 0 and denoising_start is None: | |
| latents = original_with_noise[:1] | |
| else: | |
| mask = masks[i].unsqueeze(0).to(latents.dtype) | |
| mask = mask.unsqueeze(1) # fit shape | |
| latents = original_with_noise[i] * mask + latents * (1 - mask) | |
| # end diff diff | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input | |
| t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( | |
| dtype=latent_model_input.dtype | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.transformer( | |
| latent_model_input, | |
| t_expand, | |
| encoder_hidden_states=prompt_embeds, | |
| text_embedding_mask=prompt_attention_mask, | |
| encoder_hidden_states_t5=prompt_embeds_2, | |
| text_embedding_mask_t5=prompt_attention_mask_2, | |
| image_meta_size=add_time_ids, | |
| style=style, | |
| image_rotary_emb=image_rotary_emb, | |
| return_dict=False, | |
| )[0] | |
| noise_pred, _ = noise_pred.chunk(2, dim=1) | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2) | |
| negative_prompt_embeds_2 = callback_outputs.pop( | |
| "negative_prompt_embeds_2", negative_prompt_embeds_2 | |
| ) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |