Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import json | |
| import os | |
| import tempfile | |
| import unittest | |
| import uuid | |
| from typing import Dict, List, Tuple | |
| import numpy as np | |
| import torch | |
| from huggingface_hub import delete_repo | |
| import diffusers | |
| from diffusers import ( | |
| CMStochasticIterativeScheduler, | |
| DDIMScheduler, | |
| DEISMultistepScheduler, | |
| DiffusionPipeline, | |
| EDMEulerScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| IPNDMScheduler, | |
| LMSDiscreteScheduler, | |
| UniPCMultistepScheduler, | |
| VQDiffusionScheduler, | |
| ) | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| from diffusers.utils import logging | |
| from diffusers.utils.testing_utils import CaptureLogger, torch_device | |
| from ..others.test_utils import TOKEN, USER, is_staging_test | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class SchedulerObject(SchedulerMixin, ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| e=[1, 3], | |
| ): | |
| pass | |
| class SchedulerObject2(SchedulerMixin, ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| f=[1, 3], | |
| ): | |
| pass | |
| class SchedulerObject3(SchedulerMixin, ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| e=[1, 3], | |
| f=[1, 3], | |
| ): | |
| pass | |
| class SchedulerBaseTests(unittest.TestCase): | |
| def test_save_load_from_different_config(self): | |
| obj = SchedulerObject() | |
| # mock add obj class to `diffusers` | |
| setattr(diffusers, "SchedulerObject", SchedulerObject) | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| obj.save_config(tmpdirname) | |
| with CaptureLogger(logger) as cap_logger_1: | |
| config = SchedulerObject2.load_config(tmpdirname) | |
| new_obj_1 = SchedulerObject2.from_config(config) | |
| # now save a config parameter that is not expected | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | |
| data = json.load(f) | |
| data["unexpected"] = True | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | |
| json.dump(data, f) | |
| with CaptureLogger(logger) as cap_logger_2: | |
| config = SchedulerObject.load_config(tmpdirname) | |
| new_obj_2 = SchedulerObject.from_config(config) | |
| with CaptureLogger(logger) as cap_logger_3: | |
| config = SchedulerObject2.load_config(tmpdirname) | |
| new_obj_3 = SchedulerObject2.from_config(config) | |
| assert new_obj_1.__class__ == SchedulerObject2 | |
| assert new_obj_2.__class__ == SchedulerObject | |
| assert new_obj_3.__class__ == SchedulerObject2 | |
| assert cap_logger_1.out == "" | |
| assert ( | |
| cap_logger_2.out | |
| == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | |
| " will" | |
| " be ignored. Please verify your config.json configuration file.\n" | |
| ) | |
| assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out | |
| def test_save_load_compatible_schedulers(self): | |
| SchedulerObject2._compatibles = ["SchedulerObject"] | |
| SchedulerObject._compatibles = ["SchedulerObject2"] | |
| obj = SchedulerObject() | |
| # mock add obj class to `diffusers` | |
| setattr(diffusers, "SchedulerObject", SchedulerObject) | |
| setattr(diffusers, "SchedulerObject2", SchedulerObject2) | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| obj.save_config(tmpdirname) | |
| # now save a config parameter that is expected by another class, but not origin class | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | |
| data = json.load(f) | |
| data["f"] = [0, 0] | |
| data["unexpected"] = True | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | |
| json.dump(data, f) | |
| with CaptureLogger(logger) as cap_logger: | |
| config = SchedulerObject.load_config(tmpdirname) | |
| new_obj = SchedulerObject.from_config(config) | |
| assert new_obj.__class__ == SchedulerObject | |
| assert ( | |
| cap_logger.out | |
| == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | |
| " will" | |
| " be ignored. Please verify your config.json configuration file.\n" | |
| ) | |
| def test_save_load_from_different_config_comp_schedulers(self): | |
| SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"] | |
| SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"] | |
| SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"] | |
| obj = SchedulerObject() | |
| # mock add obj class to `diffusers` | |
| setattr(diffusers, "SchedulerObject", SchedulerObject) | |
| setattr(diffusers, "SchedulerObject2", SchedulerObject2) | |
| setattr(diffusers, "SchedulerObject3", SchedulerObject3) | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| logger.setLevel(diffusers.logging.INFO) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| obj.save_config(tmpdirname) | |
| with CaptureLogger(logger) as cap_logger_1: | |
| config = SchedulerObject.load_config(tmpdirname) | |
| new_obj_1 = SchedulerObject.from_config(config) | |
| with CaptureLogger(logger) as cap_logger_2: | |
| config = SchedulerObject2.load_config(tmpdirname) | |
| new_obj_2 = SchedulerObject2.from_config(config) | |
| with CaptureLogger(logger) as cap_logger_3: | |
| config = SchedulerObject3.load_config(tmpdirname) | |
| new_obj_3 = SchedulerObject3.from_config(config) | |
| assert new_obj_1.__class__ == SchedulerObject | |
| assert new_obj_2.__class__ == SchedulerObject2 | |
| assert new_obj_3.__class__ == SchedulerObject3 | |
| assert cap_logger_1.out == "" | |
| assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | |
| assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | |
| def test_default_arguments_not_in_config(self): | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 | |
| ) | |
| assert pipe.scheduler.__class__ == DDIMScheduler | |
| # Default for DDIMScheduler | |
| assert pipe.scheduler.config.timestep_spacing == "leading" | |
| # Switch to a different one, verify we use the default for that class | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
| assert pipe.scheduler.config.timestep_spacing == "linspace" | |
| # Override with kwargs | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
| assert pipe.scheduler.config.timestep_spacing == "trailing" | |
| # Verify overridden kwargs stick | |
| pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
| assert pipe.scheduler.config.timestep_spacing == "trailing" | |
| # And stick | |
| pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
| assert pipe.scheduler.config.timestep_spacing == "trailing" | |
| def test_default_solver_type_after_switch(self): | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 | |
| ) | |
| assert pipe.scheduler.__class__ == DDIMScheduler | |
| pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) | |
| assert pipe.scheduler.config.solver_type == "logrho" | |
| # Switch to UniPC, verify the solver is the default | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| assert pipe.scheduler.config.solver_type == "bh2" | |
| class SchedulerCommonTest(unittest.TestCase): | |
| scheduler_classes = () | |
| forward_default_kwargs = () | |
| def default_num_inference_steps(self): | |
| return 50 | |
| def default_timestep(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps) | |
| try: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = self.scheduler_classes[0](**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| timestep = scheduler.timesteps[0] | |
| except NotImplementedError: | |
| logger.warning( | |
| f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method." | |
| f" `default_timestep` will be set to the default value of 1." | |
| ) | |
| timestep = 1 | |
| return timestep | |
| # NOTE: currently taking the convention that default_timestep > default_timestep_2 (alternatively, | |
| # default_timestep comes earlier in the timestep schedule than default_timestep_2) | |
| def default_timestep_2(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps) | |
| try: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = self.scheduler_classes[0](**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| if len(scheduler.timesteps) >= 2: | |
| timestep_2 = scheduler.timesteps[1] | |
| else: | |
| logger.warning( | |
| f"Using num_inference_steps from the scheduler testing class's default config leads to a timestep" | |
| f" scheduler of length {len(scheduler.timesteps)} < 2. The default `default_timestep_2` value of 0" | |
| f" will be used." | |
| ) | |
| timestep_2 = 0 | |
| except NotImplementedError: | |
| logger.warning( | |
| f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method." | |
| f" `default_timestep_2` will be set to the default value of 0." | |
| ) | |
| timestep_2 = 0 | |
| return timestep_2 | |
| def dummy_sample(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| sample = torch.rand((batch_size, num_channels, height, width)) | |
| return sample | |
| def dummy_noise_deter(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| num_elems = batch_size * num_channels * height * width | |
| sample = torch.arange(num_elems).flip(-1) | |
| sample = sample.reshape(num_channels, height, width, batch_size) | |
| sample = sample / num_elems | |
| sample = sample.permute(3, 0, 1, 2) | |
| return sample | |
| def dummy_sample_deter(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| num_elems = batch_size * num_channels * height * width | |
| sample = torch.arange(num_elems) | |
| sample = sample.reshape(num_channels, height, width, batch_size) | |
| sample = sample / num_elems | |
| sample = sample.permute(3, 0, 1, 2) | |
| return sample | |
| def get_scheduler_config(self): | |
| raise NotImplementedError | |
| def dummy_model(self): | |
| def model(sample, t, *args): | |
| # if t is a tensor, match the number of dimensions of sample | |
| if isinstance(t, torch.Tensor): | |
| num_dims = len(sample.shape) | |
| # pad t with 1s to match num_dims | |
| t = t.reshape(-1, *(1,) * (num_dims - 1)).to(sample.device).to(sample.dtype) | |
| return sample * t / (t + 1) | |
| return model | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| time_step = time_step if time_step is not None else self.default_timestep | |
| for scheduler_class in self.scheduler_classes: | |
| # TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| time_step = float(time_step) | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == CMStochasticIterativeScheduler: | |
| # Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
| scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
| time_step = scaled_sigma_max | |
| if scheduler_class == EDMEulerScheduler: | |
| time_step = scheduler.timesteps[-1] | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, time_step) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # Make sure `scale_model_input` is invoked to prevent a warning | |
| if scheduler_class == CMStochasticIterativeScheduler: | |
| # Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
| _ = scheduler.scale_model_input(sample, scaled_sigma_max) | |
| _ = new_scheduler.scale_model_input(sample, scaled_sigma_max) | |
| elif scheduler_class != VQDiffusionScheduler: | |
| _ = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
| _ = new_scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
| # Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| kwargs.update(forward_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| time_step = time_step if time_step is not None else self.default_timestep | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| time_step = float(time_step) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, time_step) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | |
| for scheduler_class in self.scheduler_classes: | |
| timestep = self.default_timestep | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| timestep = float(timestep) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == CMStochasticIterativeScheduler: | |
| # Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
| timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, timestep) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_compatibles(self): | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| assert all(c is not None for c in scheduler.compatibles) | |
| for comp_scheduler_cls in scheduler.compatibles: | |
| comp_scheduler = comp_scheduler_cls.from_config(scheduler.config) | |
| assert comp_scheduler is not None | |
| new_scheduler = scheduler_class.from_config(comp_scheduler.config) | |
| new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config} | |
| scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config} | |
| # make sure that configs are essentially identical | |
| assert new_scheduler_config == dict(scheduler.config) | |
| # make sure that only differences are for configs that are not in init | |
| init_keys = inspect.signature(scheduler_class.__init__).parameters.keys() | |
| assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set() | |
| def test_from_pretrained(self): | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_pretrained(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| # `_use_default_values` should not exist for just saved & loaded scheduler | |
| scheduler_config = dict(scheduler.config) | |
| del scheduler_config["_use_default_values"] | |
| assert scheduler_config == new_scheduler.config | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | |
| timestep_0 = self.default_timestep | |
| timestep_1 = self.default_timestep_2 | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| timestep_0 = float(timestep_0) | |
| timestep_1 = float(timestep_1) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, timestep_0) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_scheduler_outputs_equivalence(self): | |
| def set_nan_tensor_to_zero(t): | |
| t[t != t] = 0 | |
| return t | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| torch.allclose( | |
| set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
| ), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
| ), | |
| ) | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | |
| timestep = self.default_timestep | |
| if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler: | |
| timestep = 1 | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| timestep = float(timestep) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == CMStochasticIterativeScheduler: | |
| # Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
| timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, timestep) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) | |
| recursive_check(outputs_tuple, outputs_dict) | |
| def test_scheduler_public_api(self): | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class != VQDiffusionScheduler: | |
| self.assertTrue( | |
| hasattr(scheduler, "init_noise_sigma"), | |
| f"{scheduler_class} does not implement a required attribute `init_noise_sigma`", | |
| ) | |
| self.assertTrue( | |
| hasattr(scheduler, "scale_model_input"), | |
| ( | |
| f"{scheduler_class} does not implement a required class method `scale_model_input(sample," | |
| " timestep)`" | |
| ), | |
| ) | |
| self.assertTrue( | |
| hasattr(scheduler, "step"), | |
| f"{scheduler_class} does not implement a required class method `step(...)`", | |
| ) | |
| if scheduler_class != VQDiffusionScheduler: | |
| sample = self.dummy_sample | |
| if scheduler_class == CMStochasticIterativeScheduler: | |
| # Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
| scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
| scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) | |
| elif scheduler_class == EDMEulerScheduler: | |
| scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
| else: | |
| scaled_sample = scheduler.scale_model_input(sample, 0.0) | |
| self.assertEqual(sample.shape, scaled_sample.shape) | |
| def test_add_noise_device(self): | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class == IPNDMScheduler: | |
| continue | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.default_num_inference_steps) | |
| sample = self.dummy_sample.to(torch_device) | |
| if scheduler_class == CMStochasticIterativeScheduler: | |
| # Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
| scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
| scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) | |
| elif scheduler_class == EDMEulerScheduler: | |
| scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
| else: | |
| scaled_sample = scheduler.scale_model_input(sample, 0.0) | |
| self.assertEqual(sample.shape, scaled_sample.shape) | |
| noise = torch.randn_like(scaled_sample).to(torch_device) | |
| t = scheduler.timesteps[5][None] | |
| noised = scheduler.add_noise(scaled_sample, noise, t) | |
| self.assertEqual(noised.shape, scaled_sample.shape) | |
| def test_deprecated_kwargs(self): | |
| for scheduler_class in self.scheduler_classes: | |
| has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters | |
| has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 | |
| if has_kwarg_in_model_class and not has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" | |
| " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" | |
| " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" | |
| " [<deprecated_argument>]`" | |
| ) | |
| if not has_kwarg_in_model_class and has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" | |
| " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" | |
| f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" | |
| " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`" | |
| ) | |
| def test_trained_betas(self): | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class in (VQDiffusionScheduler, CMStochasticIterativeScheduler): | |
| continue | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3])) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_pretrained(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| assert scheduler.betas.tolist() == new_scheduler.betas.tolist() | |
| def test_getattr_is_correct(self): | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| # save some things to test | |
| scheduler.dummy_attribute = 5 | |
| scheduler.register_to_config(test_attribute=5) | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| # 30 for warning | |
| logger.setLevel(30) | |
| with CaptureLogger(logger) as cap_logger: | |
| assert hasattr(scheduler, "dummy_attribute") | |
| assert getattr(scheduler, "dummy_attribute") == 5 | |
| assert scheduler.dummy_attribute == 5 | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |
| logger = logging.get_logger("diffusers.schedulers.scheduling_utils") | |
| # 30 for warning | |
| logger.setLevel(30) | |
| with CaptureLogger(logger) as cap_logger: | |
| assert hasattr(scheduler, "save_pretrained") | |
| fn = scheduler.save_pretrained | |
| fn_1 = getattr(scheduler, "save_pretrained") | |
| assert fn == fn_1 | |
| # no warning should be thrown | |
| assert cap_logger.out == "" | |
| # warning should be thrown | |
| with self.assertWarns(FutureWarning): | |
| assert scheduler.test_attribute == 5 | |
| with self.assertWarns(FutureWarning): | |
| assert getattr(scheduler, "test_attribute") == 5 | |
| with self.assertRaises(AttributeError) as error: | |
| scheduler.does_not_exist | |
| assert str(error.exception) == f"'{type(scheduler).__name__}' object has no attribute 'does_not_exist'" | |
| class SchedulerPushToHubTester(unittest.TestCase): | |
| identifier = uuid.uuid4() | |
| repo_id = f"test-scheduler-{identifier}" | |
| org_repo_id = f"valid_org/{repo_id}-org" | |
| def test_push_to_hub(self): | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| scheduler.push_to_hub(self.repo_id, token=TOKEN) | |
| scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") | |
| assert type(scheduler) == type(scheduler_loaded) | |
| # Reset repo | |
| delete_repo(token=TOKEN, repo_id=self.repo_id) | |
| # Push to hub via save_config | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| scheduler.save_config(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN) | |
| scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") | |
| assert type(scheduler) == type(scheduler_loaded) | |
| # Reset repo | |
| delete_repo(token=TOKEN, repo_id=self.repo_id) | |
| def test_push_to_hub_in_organization(self): | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| scheduler.push_to_hub(self.org_repo_id, token=TOKEN) | |
| scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) | |
| assert type(scheduler) == type(scheduler_loaded) | |
| # Reset repo | |
| delete_repo(token=TOKEN, repo_id=self.org_repo_id) | |
| # Push to hub via save_config | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| scheduler.save_config(tmp_dir, repo_id=self.org_repo_id, push_to_hub=True, token=TOKEN) | |
| scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) | |
| assert type(scheduler) == type(scheduler_loaded) | |
| # Reset repo | |
| delete_repo(token=TOKEN, repo_id=self.org_repo_id) | |