Junlinh commited on
Commit
03afbc2
·
1 Parent(s): 7c9c2e7

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -31
app.py DELETED
@@ -1,31 +0,0 @@
1
- import gradio as gr
2
- import torchvision.transforms as transforms
3
- from PIL import Image
4
- import torch
5
- def predict(input_img):
6
- input_img = Image.fromarray(np.uint8(input_img))
7
- model1 = models.__dict__['resnet50'](num_classes=1)
8
- model2 = models.__dict__['resnet50'](num_classes=1)
9
-
10
- loc = 'cuda:{}'.format(0)
11
- checkpoint1 = torch.load("./machine_full_best.tar", map_location=loc)
12
- model1.load_state_dict(checkpoint1['state_dict'])
13
- checkpoint2 = torch.load("./human_full_best.tar", map_location=loc)
14
- model2.load_state_dict(checkpoint2['state_dict'])
15
-
16
- my_transform = transforms.Compose([
17
- transforms.RandomResizedCrop(224, (1, 1)),
18
- transforms.ToTensor(),
19
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
20
- std=[0.229, 0.224, 0.225]),])
21
-
22
- input_img = my_transform(input_img).view(1,3,224,224)
23
- model1.eval()
24
- model2.eval()
25
- result1 = round(model1(input_img).item(), 3)
26
- result2 = round(model2(input_img).item(), 3)
27
- result = 'MachineMem score = ' + str(result1) + ', HumanMem score = ' + str(result2) +'.'
28
- return result
29
-
30
- demo = gr.Interface(predict, gr.Image(), "text")
31
- demo.launch()