Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torchvision.transforms as transforms
|
3 |
-
from PIL import Image
|
4 |
-
import torch
|
5 |
-
def predict(input_img):
|
6 |
-
input_img = Image.fromarray(np.uint8(input_img))
|
7 |
-
model1 = models.__dict__['resnet50'](num_classes=1)
|
8 |
-
model2 = models.__dict__['resnet50'](num_classes=1)
|
9 |
-
|
10 |
-
loc = 'cuda:{}'.format(0)
|
11 |
-
checkpoint1 = torch.load("./machine_full_best.tar", map_location=loc)
|
12 |
-
model1.load_state_dict(checkpoint1['state_dict'])
|
13 |
-
checkpoint2 = torch.load("./human_full_best.tar", map_location=loc)
|
14 |
-
model2.load_state_dict(checkpoint2['state_dict'])
|
15 |
-
|
16 |
-
my_transform = transforms.Compose([
|
17 |
-
transforms.RandomResizedCrop(224, (1, 1)),
|
18 |
-
transforms.ToTensor(),
|
19 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
20 |
-
std=[0.229, 0.224, 0.225]),])
|
21 |
-
|
22 |
-
input_img = my_transform(input_img).view(1,3,224,224)
|
23 |
-
model1.eval()
|
24 |
-
model2.eval()
|
25 |
-
result1 = round(model1(input_img).item(), 3)
|
26 |
-
result2 = round(model2(input_img).item(), 3)
|
27 |
-
result = 'MachineMem score = ' + str(result1) + ', HumanMem score = ' + str(result2) +'.'
|
28 |
-
return result
|
29 |
-
|
30 |
-
demo = gr.Interface(predict, gr.Image(), "text")
|
31 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|