Spaces:
Sleeping
Sleeping
Delete mt_eng_vietnamese.py
Browse files- mt_eng_vietnamese.py +0 -126
mt_eng_vietnamese.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
|
17 |
-
import collections
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
|
21 |
-
|
22 |
-
_DESCRIPTION = """\
|
23 |
-
Preprocessed Dataset from IWSLT'15 English-Vietnamese machine translation: English-Vietnamese.
|
24 |
-
"""
|
25 |
-
|
26 |
-
_CITATION = """\
|
27 |
-
@inproceedings{Luong-Manning:iwslt15,
|
28 |
-
Address = {Da Nang, Vietnam}
|
29 |
-
Author = {Luong, Minh-Thang and Manning, Christopher D.},
|
30 |
-
Booktitle = {International Workshop on Spoken Language Translation},
|
31 |
-
Title = {Stanford Neural Machine Translation Systems for Spoken Language Domain},
|
32 |
-
Year = {2015}}
|
33 |
-
"""
|
34 |
-
|
35 |
-
_DATA_URL = "https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi/{}.{}"
|
36 |
-
|
37 |
-
# Tuple that describes a single pair of files with matching translations.
|
38 |
-
# language_to_file is the map from language (2 letter string: example 'en')
|
39 |
-
# to the file path in the extracted directory.
|
40 |
-
TranslateData = collections.namedtuple("TranslateData", ["url", "language_to_file"])
|
41 |
-
|
42 |
-
|
43 |
-
class MT_Eng_ViConfig(datasets.BuilderConfig):
|
44 |
-
"""BuilderConfig for MT_Eng_Vietnamese."""
|
45 |
-
|
46 |
-
def __init__(self, language_pair=(None, None), **kwargs):
|
47 |
-
"""BuilderConfig for MT_Eng_Vi.
|
48 |
-
Args:
|
49 |
-
for the `datasets.features.text.TextEncoder` used for the features feature.
|
50 |
-
language_pair: pair of languages that will be used for translation. Should
|
51 |
-
contain 2-letter coded strings. First will be used at source and second
|
52 |
-
as target in supervised mode. For example: ("vi", "en").
|
53 |
-
**kwargs: keyword arguments forwarded to super.
|
54 |
-
"""
|
55 |
-
|
56 |
-
description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1])
|
57 |
-
super(MT_Eng_ViConfig, self).__init__(
|
58 |
-
description=description,
|
59 |
-
version=datasets.Version("1.0.0"),
|
60 |
-
**kwargs,
|
61 |
-
)
|
62 |
-
self.language_pair = language_pair
|
63 |
-
|
64 |
-
|
65 |
-
class MTEngVietnamese(datasets.GeneratorBasedBuilder):
|
66 |
-
"""English Vietnamese machine translation dataset from IWSLT2015."""
|
67 |
-
|
68 |
-
BUILDER_CONFIGS = [
|
69 |
-
MT_Eng_ViConfig(
|
70 |
-
name="iwslt2015-vi-en",
|
71 |
-
language_pair=("vi", "en"),
|
72 |
-
),
|
73 |
-
MT_Eng_ViConfig(
|
74 |
-
name="iwslt2015-en-vi",
|
75 |
-
language_pair=("en", "vi"),
|
76 |
-
),
|
77 |
-
]
|
78 |
-
BUILDER_CONFIG_CLASS = MT_Eng_ViConfig
|
79 |
-
|
80 |
-
def _info(self):
|
81 |
-
source, target = self.config.language_pair
|
82 |
-
return datasets.DatasetInfo(
|
83 |
-
description=_DESCRIPTION,
|
84 |
-
features=datasets.Features(
|
85 |
-
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
|
86 |
-
),
|
87 |
-
supervised_keys=(source, target),
|
88 |
-
homepage="https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi/",
|
89 |
-
citation=_CITATION,
|
90 |
-
)
|
91 |
-
|
92 |
-
def _split_generators(self, dl_manager):
|
93 |
-
source, target = self.config.language_pair
|
94 |
-
|
95 |
-
files = {}
|
96 |
-
for split in ("train", "dev", "test"):
|
97 |
-
if split == "dev":
|
98 |
-
dl_dir_src = dl_manager.download_and_extract(_DATA_URL.format("tst2012", source))
|
99 |
-
dl_dir_tar = dl_manager.download_and_extract(_DATA_URL.format("tst2012", target))
|
100 |
-
if split == "dev":
|
101 |
-
dl_dir_src = dl_manager.download_and_extract(_DATA_URL.format("tst2013", source))
|
102 |
-
dl_dir_tar = dl_manager.download_and_extract(_DATA_URL.format("tst2013", target))
|
103 |
-
if split == "train":
|
104 |
-
dl_dir_src = dl_manager.download_and_extract(_DATA_URL.format(split, source))
|
105 |
-
dl_dir_tar = dl_manager.download_and_extract(_DATA_URL.format(split, target))
|
106 |
-
|
107 |
-
files[split] = {"source_file": dl_dir_src, "target_file": dl_dir_tar}
|
108 |
-
|
109 |
-
return [
|
110 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]),
|
111 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["dev"]),
|
112 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]),
|
113 |
-
]
|
114 |
-
|
115 |
-
def _generate_examples(self, source_file, target_file):
|
116 |
-
"""This function returns the examples in the raw (text) form."""
|
117 |
-
with open(source_file, encoding="utf-8") as f:
|
118 |
-
source_sentences = f.read().split("\n")
|
119 |
-
with open(target_file, encoding="utf-8") as f:
|
120 |
-
target_sentences = f.read().split("\n")
|
121 |
-
|
122 |
-
source, target = self.config.language_pair
|
123 |
-
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
|
124 |
-
result = {"translation": {source: l1, target: l2}}
|
125 |
-
# Make sure that both translations are non-empty.
|
126 |
-
yield idx, result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|