JustKiddo commited on
Commit
b5075c8
·
verified ·
1 Parent(s): db4ec8b

Attempted to append the respond with a translation dataset for Vietnamese reponses.

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -1,14 +1,15 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
-
4
  from datasets import load_dataset
5
 
6
- """
7
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
- """
9
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
  dataset = load_dataset("JustKiddo/KiddosVault")
 
11
 
 
 
 
 
12
 
13
  def respond(
14
  message,
@@ -38,19 +39,18 @@ def respond(
38
  top_p=top_p,
39
  ):
40
  token = message.choices[0].delta.content
41
-
42
  response += token
43
  yield response
44
 
45
- """
46
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
47
- """
48
  demo = gr.ChatInterface(
49
  respond,
50
  additional_inputs=[
51
  gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
52
  gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
53
- gr.Slider(minimum=0.1, maximum=4.0, value=1, step=0.1, label="Temperature"),
54
  gr.Slider(
55
  minimum=0.1,
56
  maximum=1.0,
@@ -61,6 +61,5 @@ demo = gr.ChatInterface(
61
  ],
62
  )
63
 
64
-
65
  if __name__ == "__main__":
66
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
  from datasets import load_dataset
4
 
 
 
 
5
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
  dataset = load_dataset("JustKiddo/KiddosVault")
7
+ translation = load_dataset("IWSLT/mt_eng_vietnamese")
8
 
9
+ def translate_text(text, translation_dataset):
10
+ # Assuming the translation dataset has a method to translate text
11
+ translated_text = translation_dataset['train'][0]['translation']['vi'] # Example translation
12
+ return translated_text
13
 
14
  def respond(
15
  message,
 
39
  top_p=top_p,
40
  ):
41
  token = message.choices[0].delta.content
 
42
  response += token
43
  yield response
44
 
45
+ translated_response = translate_text(response, translation)
46
+ yield response + "\n\nTranslation: " + translated_response
47
+
48
  demo = gr.ChatInterface(
49
  respond,
50
  additional_inputs=[
51
  gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
52
  gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
53
+ gr.Slider(minimum=0.1, maximum 4.0, value=1, step=0.1, label="Temperature"),
54
  gr.Slider(
55
  minimum=0.1,
56
  maximum=1.0,
 
61
  ],
62
  )
63
 
 
64
  if __name__ == "__main__":
65
  demo.launch()