File size: 4,179 Bytes
ed3a930
 
678f82f
ed3a930
 
 
 
 
 
 
 
 
 
61caa6e
 
 
 
 
 
ed3a930
61caa6e
 
 
 
 
ed3a930
 
 
 
 
 
61caa6e
 
 
ed3a930
61caa6e
ed3a930
 
61caa6e
 
ed3a930
 
61caa6e
 
 
ed3a930
 
 
 
 
 
 
 
 
ad81de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed3a930
ad81de3
 
ed3a930
61caa6e
 
 
 
ed3a930
ad81de3
 
 
 
 
 
 
 
 
 
 
 
 
61caa6e
 
 
ad81de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
import os
import zipfile
import pandas as pd
from langchain.document_loaders import DataFrameLoader
#import tiktoken
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from transformers import AutoTokenizer, AutoModelForCausalLM

# Function to load vector database
def load_vector_db(zip_file_path, extract_path):
    with st.spinner("Loading vector store..."):
        with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
            zip_ref.extractall(extract_path)
    
    embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
    vectordb = Chroma(
        persist_directory=extract_path,
        embedding_function=embedding_function
    )
    st.success("Vector store loaded")
    return vectordb

# Function to augment prompt
def augment_prompt(query, vectordb):
    results = vectordb.similarity_search(query, k=3)
    source_knowledge = "\n".join([x.page_content for x in results])
    augmented_prompt = f"""
    You are an AI assistant. Use the context provided below to answer the question as comprehensively as possible. 
    If the answer is not contained within the context, respond with "I don't know".

    Context:
    {source_knowledge}

    Question: {query}
    """
    return augmented_prompt

# Function to handle chat with OpenAI
def chat_with_openai(query, vectordb, openai_api_key):
    chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key)
    augmented_query = augment_prompt(query, vectordb)
    prompt = HumanMessage(content=augmented_query)
    messages = [
        SystemMessage(content="You are a helpful assistant."),
        prompt
    ]
    res = chat(messages)
    return res.content

# # Streamlit UI
# st.title("Document Processing and AI Chat with LangChain")

# # Load vector database
# zip_file_path = "chroma_db_compressed_.zip"
# extract_path = "./chroma_db_extracted"
# vectordb = load_vector_db(zip_file_path, extract_path)

# # Query input
# query = st.text_input("Enter your query", "Recommend a company to work as a data scientist in the health sector")

# if st.button("Get Answer"):
#     # Chat with OpenAI
#     openai_api_key = st.secrets["OPENAI_API_KEY"]
#     response = chat_with_openai(query, vectordb, openai_api_key)
#     st.write("Response from AI:")
#     st.write(response)


# Streamlit UI
st.title("Data Roles Company Finder Chatbot")
st.write("This app helps users find companies hiring for data roles, providing information such as job title, salary estimate, job description, company rating, and more.")

# Load vector database
zip_file_path = "chroma_db_compressed_.zip"
extract_path = "./chroma_db_extracted"
vectordb = load_vector_db(zip_file_path, extract_path)

# Initialize session state for chat history
if "messages" not in st.session_state:
    st.session_state.messages = [
        SystemMessage(content="You are a helpful assistant.")
    ]

# Display chat history
for message in st.session_state.messages:
    if isinstance(message, HumanMessage):
        st.write(f"You: {message.content}")
    else:
        st.write(f"AI: {message.content}")

# Query input
query = st.text_input("Enter your query", "Recommend a company to work as a data scientist in the health sector")

if st.button("Send"):
    if query:
        # Add user query to chat history
        st.session_state.messages.append(HumanMessage(content=query))
        
        # Chat with OpenAI
        openai_api_key = st.secrets["OPENAI_API_KEY"]
        response = chat_with_openai(query, vectordb, openai_api_key)
        
        # Add AI response to chat history
        st.session_state.messages.append(SystemMessage(content=response))
        
        # Display chat history
        for message in st.session_state.messages:
            if isinstance(message, HumanMessage):
                st.write(f"You: {message.content}")
            else:
                st.write(f"AI: {message.content}")