Spaces:
Sleeping
Sleeping
File size: 4,179 Bytes
ed3a930 678f82f ed3a930 61caa6e ed3a930 61caa6e ed3a930 61caa6e ed3a930 61caa6e ed3a930 61caa6e ed3a930 61caa6e ed3a930 ad81de3 ed3a930 ad81de3 ed3a930 61caa6e ed3a930 ad81de3 61caa6e ad81de3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import streamlit as st
import os
import zipfile
import pandas as pd
from langchain.document_loaders import DataFrameLoader
#import tiktoken
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from transformers import AutoTokenizer, AutoModelForCausalLM
# Function to load vector database
def load_vector_db(zip_file_path, extract_path):
with st.spinner("Loading vector store..."):
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = Chroma(
persist_directory=extract_path,
embedding_function=embedding_function
)
st.success("Vector store loaded")
return vectordb
# Function to augment prompt
def augment_prompt(query, vectordb):
results = vectordb.similarity_search(query, k=3)
source_knowledge = "\n".join([x.page_content for x in results])
augmented_prompt = f"""
You are an AI assistant. Use the context provided below to answer the question as comprehensively as possible.
If the answer is not contained within the context, respond with "I don't know".
Context:
{source_knowledge}
Question: {query}
"""
return augmented_prompt
# Function to handle chat with OpenAI
def chat_with_openai(query, vectordb, openai_api_key):
chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key)
augmented_query = augment_prompt(query, vectordb)
prompt = HumanMessage(content=augmented_query)
messages = [
SystemMessage(content="You are a helpful assistant."),
prompt
]
res = chat(messages)
return res.content
# # Streamlit UI
# st.title("Document Processing and AI Chat with LangChain")
# # Load vector database
# zip_file_path = "chroma_db_compressed_.zip"
# extract_path = "./chroma_db_extracted"
# vectordb = load_vector_db(zip_file_path, extract_path)
# # Query input
# query = st.text_input("Enter your query", "Recommend a company to work as a data scientist in the health sector")
# if st.button("Get Answer"):
# # Chat with OpenAI
# openai_api_key = st.secrets["OPENAI_API_KEY"]
# response = chat_with_openai(query, vectordb, openai_api_key)
# st.write("Response from AI:")
# st.write(response)
# Streamlit UI
st.title("Data Roles Company Finder Chatbot")
st.write("This app helps users find companies hiring for data roles, providing information such as job title, salary estimate, job description, company rating, and more.")
# Load vector database
zip_file_path = "chroma_db_compressed_.zip"
extract_path = "./chroma_db_extracted"
vectordb = load_vector_db(zip_file_path, extract_path)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = [
SystemMessage(content="You are a helpful assistant.")
]
# Display chat history
for message in st.session_state.messages:
if isinstance(message, HumanMessage):
st.write(f"You: {message.content}")
else:
st.write(f"AI: {message.content}")
# Query input
query = st.text_input("Enter your query", "Recommend a company to work as a data scientist in the health sector")
if st.button("Send"):
if query:
# Add user query to chat history
st.session_state.messages.append(HumanMessage(content=query))
# Chat with OpenAI
openai_api_key = st.secrets["OPENAI_API_KEY"]
response = chat_with_openai(query, vectordb, openai_api_key)
# Add AI response to chat history
st.session_state.messages.append(SystemMessage(content=response))
# Display chat history
for message in st.session_state.messages:
if isinstance(message, HumanMessage):
st.write(f"You: {message.content}")
else:
st.write(f"AI: {message.content}") |