Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -44,26 +44,26 @@ def augment_prompt(query, vectordb):
|
|
44 |
return augmented_prompt
|
45 |
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
|
60 |
-
# Function to handle chat with the Google open-source LLM
|
61 |
-
def chat_with_google_llm(query, vectordb, tokenizer, model):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
|
69 |
# Streamlit UI
|
@@ -75,12 +75,12 @@ zip_file_path = "chroma_db_compressed_.zip"
|
|
75 |
extract_path = "./chroma_db_extracted"
|
76 |
vectordb = load_vector_db(zip_file_path, extract_path)
|
77 |
|
78 |
-
# Load Google model and tokenizer
|
79 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
80 |
-
model = AutoModelForCausalLM.from_pretrained(
|
81 |
-
|
82 |
-
|
83 |
-
)#.to("cuda")
|
84 |
|
85 |
# Initialize session state for chat history
|
86 |
if "messages" not in st.session_state:
|
@@ -99,11 +99,26 @@ if prompt := st.chat_input("Enter your query"):
|
|
99 |
st.markdown(prompt)
|
100 |
|
101 |
with st.chat_message("assistant"):
|
102 |
-
|
|
|
103 |
st.markdown(response)
|
104 |
|
105 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
|
|
|
|
|
|
|
|
107 |
# # Query input
|
108 |
# query = st.text_input("Enter your query", "")
|
109 |
|
|
|
44 |
return augmented_prompt
|
45 |
|
46 |
|
47 |
+
# Function to handle chat with OpenAI
|
48 |
+
def chat_with_openai(query, vectordb, openai_api_key):
|
49 |
+
chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key)
|
50 |
+
augmented_query = augment_prompt(query, vectordb)
|
51 |
+
prompt = HumanMessage(content=augmented_query)
|
52 |
+
messages = [
|
53 |
+
SystemMessage(content="You are a helpful assistant."),
|
54 |
+
prompt
|
55 |
+
]
|
56 |
+
res = chat(messages)
|
57 |
+
return res.content
|
58 |
|
59 |
|
60 |
+
# # Function to handle chat with the Google open-source LLM
|
61 |
+
# def chat_with_google_llm(query, vectordb, tokenizer, model):
|
62 |
+
# augmented_query = augment_prompt(query, vectordb)
|
63 |
+
# input_ids = tokenizer(augmented_query, return_tensors="pt") #.to("cuda")
|
64 |
+
# outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
|
65 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
+
# return response
|
67 |
|
68 |
|
69 |
# Streamlit UI
|
|
|
75 |
extract_path = "./chroma_db_extracted"
|
76 |
vectordb = load_vector_db(zip_file_path, extract_path)
|
77 |
|
78 |
+
# # Load Google model and tokenizer
|
79 |
+
# tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
80 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
81 |
+
# "google/gemma-2b-it",
|
82 |
+
# torch_dtype=torch.bfloat16
|
83 |
+
# )#.to("cuda")
|
84 |
|
85 |
# Initialize session state for chat history
|
86 |
if "messages" not in st.session_state:
|
|
|
99 |
st.markdown(prompt)
|
100 |
|
101 |
with st.chat_message("assistant"):
|
102 |
+
openai_api_key = st.secrets["OPENAI_API_KEY"]
|
103 |
+
response = chat_with_openai(prompt, vectordb, openai_api_key)
|
104 |
st.markdown(response)
|
105 |
|
106 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
107 |
+
|
108 |
+
# User input
|
109 |
+
# if prompt := st.chat_input("Enter your query"):
|
110 |
+
# st.session_state.messages.append({"role": "user", "content": prompt})
|
111 |
+
# with st.chat_message("user"):
|
112 |
+
# st.markdown(prompt)
|
113 |
+
|
114 |
+
# with st.chat_message("assistant"):
|
115 |
+
# response = chat_with_google_llm(prompt, vectordb, tokenizer, model)
|
116 |
+
# st.markdown(response)
|
117 |
|
118 |
+
# st.session_state.messages.append({"role": "assistant", "content": response})
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
# # Query input
|
123 |
# query = st.text_input("Enter your query", "")
|
124 |
|