Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,43 +27,26 @@ def load_vector_db(zip_file_path, extract_path):
|
|
27 |
st.success("Vector store loaded")
|
28 |
return vectordb
|
29 |
|
30 |
-
# # Function to augment prompt
|
31 |
-
# def augment_prompt(query, vectordb):
|
32 |
-
# results = vectordb.similarity_search(query, k=10)
|
33 |
-
# source_knowledge = "\n".join([x.page_content for x in results])
|
34 |
-
# augmented_prompt = f"""
|
35 |
-
# You are an AI assistant. Use the context provided below to answer the question as comprehensively as possible.
|
36 |
-
# If the answer is not contained within the context, respond politely that you cannot provide that information.
|
37 |
-
|
38 |
-
# Context:
|
39 |
-
# {source_knowledge}
|
40 |
-
|
41 |
-
# Question: {query}
|
42 |
-
# """
|
43 |
-
# return augmented_prompt
|
44 |
-
|
45 |
# Function to augment prompt
|
46 |
-
def augment_prompt(query, vectordb
|
47 |
-
results = vectordb.similarity_search(query, k=
|
48 |
source_knowledge = "\n".join([x.page_content for x in results])
|
49 |
augmented_prompt = f"""
|
50 |
You are an AI assistant. Use the context provided below to answer the question as comprehensively as possible.
|
51 |
-
If the answer is not contained within the context, respond
|
52 |
|
53 |
Context:
|
54 |
{source_knowledge}
|
55 |
|
56 |
-
Additional Web Search Results:
|
57 |
-
{search_results}
|
58 |
-
|
59 |
Question: {query}
|
60 |
"""
|
61 |
return augmented_prompt
|
62 |
|
|
|
63 |
# Function to handle chat with OpenAI
|
64 |
-
def chat_with_openai(query, vectordb, openai_api_key
|
65 |
-
chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key
|
66 |
-
augmented_query = augment_prompt(query, vectordb
|
67 |
prompt = HumanMessage(content=augmented_query)
|
68 |
messages = [
|
69 |
SystemMessage(content="You are a helpful assistant."),
|
@@ -72,37 +55,6 @@ def chat_with_openai(query, vectordb, openai_api_key, search_results):
|
|
72 |
res = chat(messages)
|
73 |
return res.content
|
74 |
|
75 |
-
# Function to perform web search
|
76 |
-
def perform_web_search(query):
|
77 |
-
headers = {
|
78 |
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"}
|
79 |
-
search_results = ""
|
80 |
-
|
81 |
-
# Glassdoor search
|
82 |
-
glassdoor_url = f"https://www.glassdoor.com/Search/results.htm?keyword={query}"
|
83 |
-
response = requests.get(glassdoor_url, headers=headers)
|
84 |
-
if response.status_code == 200:
|
85 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
86 |
-
glassdoor_results = soup.find_all('div', {'class': 'jobContainer'})
|
87 |
-
for result in glassdoor_results[:5]: # limiting to first 3 results
|
88 |
-
title = result.find('a', {'class': 'jobInfoItem jobTitle'}).text.strip() if result.find('a', {'class': 'jobInfoItem jobTitle'}) else 'N/A'
|
89 |
-
company = result.find('div', {'class': 'jobInfoItem jobEmpolyerName'}).text.strip() if result.find('div', {'class': 'jobInfoItem jobEmpolyerName'}) else 'N/A'
|
90 |
-
location = result.find('span', {'class': 'subtle loc'}).text.strip() if result.find('span', {'class': 'subtle loc'}) else 'N/A'
|
91 |
-
search_results += f"Glassdoor Result: {title} at {company}, {location}\n"
|
92 |
-
|
93 |
-
# Indeed search
|
94 |
-
indeed_url = f"https://www.indeed.com/jobs?q={query}&limit=10"
|
95 |
-
response = requests.get(indeed_url, headers=headers)
|
96 |
-
if response.status_code == 200:
|
97 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
98 |
-
indeed_results = soup.find_all('div', {'class': 'jobsearch-SerpJobCard'})
|
99 |
-
for result in indeed_results[:5]: # limiting to first 3 results
|
100 |
-
title = result.find('h2', {'class': 'title'}).text.strip() if result.find('h2', {'class': 'title'}) else 'N/A'
|
101 |
-
company = result.find('span', {'class': 'company'}).text.strip() if result.find('span', {'class': 'company'}) else 'N/A'
|
102 |
-
location = result.find('span', {'class': 'location'}).text.strip() if result.find('span', {'class': 'location'}) else 'N/A'
|
103 |
-
search_results += f"Indeed Result: {title} at {company}, {location}\n"
|
104 |
-
|
105 |
-
return search_results
|
106 |
|
107 |
# Streamlit UI
|
108 |
st.title("Data Roles Company Finder Chatbot")
|
@@ -122,69 +74,19 @@ for message in st.session_state.messages:
|
|
122 |
with st.chat_message(message["role"]):
|
123 |
st.markdown(message["content"])
|
124 |
|
|
|
125 |
# User input
|
126 |
if prompt := st.chat_input("Enter your query"):
|
127 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
128 |
with st.chat_message("user"):
|
129 |
st.markdown(prompt)
|
130 |
|
131 |
-
# Perform web search
|
132 |
-
search_results = perform_web_search(prompt)
|
133 |
-
|
134 |
-
# Chat with OpenAI
|
135 |
-
openai_api_key = st.secrets["OPENAI_API_KEY"]
|
136 |
-
response = chat_with_openai(prompt, vectordb, openai_api_key, search_results)
|
137 |
-
|
138 |
-
# Display assistant response
|
139 |
with st.chat_message("assistant"):
|
|
|
|
|
140 |
st.markdown(response)
|
141 |
|
142 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
143 |
-
|
144 |
-
# # Function to handle chat with OpenAI
|
145 |
-
# def chat_with_openai(query, vectordb, openai_api_key):
|
146 |
-
# chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key)
|
147 |
-
# augmented_query = augment_prompt(query, vectordb)
|
148 |
-
# prompt = HumanMessage(content=augmented_query)
|
149 |
-
# messages = [
|
150 |
-
# SystemMessage(content="You are a helpful assistant."),
|
151 |
-
# prompt
|
152 |
-
# ]
|
153 |
-
# res = chat(messages)
|
154 |
-
# return res.content
|
155 |
-
|
156 |
-
|
157 |
-
# # Streamlit UI
|
158 |
-
# st.title("Data Roles Company Finder Chatbot")
|
159 |
-
# st.write("This app helps users find companies hiring for data roles, providing information such as job title, salary estimate, job description, company rating, and more.")
|
160 |
-
|
161 |
-
# # Load vector database
|
162 |
-
# zip_file_path = "chroma_db_compressed_.zip"
|
163 |
-
# extract_path = "./chroma_db_extracted"
|
164 |
-
# vectordb = load_vector_db(zip_file_path, extract_path)
|
165 |
-
|
166 |
-
# # Initialize session state for chat history
|
167 |
-
# if "messages" not in st.session_state:
|
168 |
-
# st.session_state.messages = []
|
169 |
-
|
170 |
-
# # Display chat history
|
171 |
-
# for message in st.session_state.messages:
|
172 |
-
# with st.chat_message(message["role"]):
|
173 |
-
# st.markdown(message["content"])
|
174 |
-
|
175 |
-
|
176 |
-
# # User input
|
177 |
-
# if prompt := st.chat_input("Enter your query"):
|
178 |
-
# st.session_state.messages.append({"role": "user", "content": prompt})
|
179 |
-
# with st.chat_message("user"):
|
180 |
-
# st.markdown(prompt)
|
181 |
-
|
182 |
-
# with st.chat_message("assistant"):
|
183 |
-
# openai_api_key = st.secrets["OPENAI_API_KEY"]
|
184 |
-
# response = chat_with_openai(prompt, vectordb, openai_api_key)
|
185 |
-
# st.markdown(response)
|
186 |
-
|
187 |
-
# st.session_state.messages.append({"role": "assistant", "content": response})
|
188 |
|
189 |
# # Query input
|
190 |
# query = st.text_input("Enter your query", "")
|
|
|
27 |
st.success("Vector store loaded")
|
28 |
return vectordb
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Function to augment prompt
|
31 |
+
def augment_prompt(query, vectordb):
|
32 |
+
results = vectordb.similarity_search(query, k=10)
|
33 |
source_knowledge = "\n".join([x.page_content for x in results])
|
34 |
augmented_prompt = f"""
|
35 |
You are an AI assistant. Use the context provided below to answer the question as comprehensively as possible.
|
36 |
+
If the answer is not contained within the context, respond politely that you cannot provide that information.
|
37 |
|
38 |
Context:
|
39 |
{source_knowledge}
|
40 |
|
|
|
|
|
|
|
41 |
Question: {query}
|
42 |
"""
|
43 |
return augmented_prompt
|
44 |
|
45 |
+
|
46 |
# Function to handle chat with OpenAI
|
47 |
+
def chat_with_openai(query, vectordb, openai_api_key):
|
48 |
+
chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key)
|
49 |
+
augmented_query = augment_prompt(query, vectordb)
|
50 |
prompt = HumanMessage(content=augmented_query)
|
51 |
messages = [
|
52 |
SystemMessage(content="You are a helpful assistant."),
|
|
|
55 |
res = chat(messages)
|
56 |
return res.content
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Streamlit UI
|
60 |
st.title("Data Roles Company Finder Chatbot")
|
|
|
74 |
with st.chat_message(message["role"]):
|
75 |
st.markdown(message["content"])
|
76 |
|
77 |
+
|
78 |
# User input
|
79 |
if prompt := st.chat_input("Enter your query"):
|
80 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
81 |
with st.chat_message("user"):
|
82 |
st.markdown(prompt)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
with st.chat_message("assistant"):
|
85 |
+
openai_api_key = st.secrets["OPENAI_API_KEY"]
|
86 |
+
response = chat_with_openai(prompt, vectordb, openai_api_key)
|
87 |
st.markdown(response)
|
88 |
|
89 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# # Query input
|
92 |
# query = st.text_input("Enter your query", "")
|