File size: 5,591 Bytes
5ab5cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/attend.py
from functools import wraps
from packaging import version
from collections import namedtuple

import torch
from torch import nn, einsum
import torch.nn.functional as F

from einops import rearrange, repeat
from functools import partial

# constants

AttentionConfig = namedtuple('AttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])

# helpers

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def once(fn):
    called = False
    @wraps(fn)
    def inner(x):
        nonlocal called
        if called:
            return
        called = True
        return fn(x)
    return inner

print_once = once(print)

class RMSNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.g = nn.Parameter(torch.ones(1, dim, 1, 1))

    def forward(self, x):
        return F.normalize(x, dim = 1) * self.g * (x.shape[1] ** 0.5)

# main class

class Attend(nn.Module):
    def __init__(
        self,
        dropout = 0.,
        flash = False,
        scale = None
    ):
        super().__init__()
        self.dropout = dropout
        self.scale = scale
        self.attn_dropout = nn.Dropout(dropout)

        self.flash = flash
        assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'

        # determine efficient attention configs for cuda and cpu

        self.cpu_config = AttentionConfig(True, True, True)
        self.cuda_config = None

        if not torch.cuda.is_available() or not flash:
            return

        device_properties = torch.cuda.get_device_properties(torch.device('cuda'))

        device_version = version.parse(f'{device_properties.major}.{device_properties.minor}')

        if device_version > version.parse('8.0'):
            print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
            self.cuda_config = AttentionConfig(True, False, False)
        else:
            print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
            self.cuda_config = AttentionConfig(False, True, True)

    def flash_attn(self, q, k, v):
        _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device

        if exists(self.scale):
            default_scale = q.shape[-1]
            q = q * (self.scale / default_scale)

        q, k, v = map(lambda t: t.contiguous(), (q, k, v))

        # Check if there is a compatible device for flash attention

        config = self.cuda_config if is_cuda else self.cpu_config

        # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale

        with torch.backends.cuda.sdp_kernel(**config._asdict()):
            out = F.scaled_dot_product_attention(
                q, k, v,
                dropout_p = self.dropout if self.training else 0.
            )

        return out

    def forward(self, q, k, v):
        """
        einstein notation
        b - batch
        h - heads
        n, i, j - sequence length (base sequence length, source, target)
        d - feature dimension
        """

        q_len, k_len, device = q.shape[-2], k.shape[-2], q.device

        if self.flash:
            return self.flash_attn(q, k, v)

        scale = default(self.scale, q.shape[-1] ** -0.5)

        # similarity

        sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale

        # attention

        attn = sim.softmax(dim = -1)
        attn = self.attn_dropout(attn)

        # aggregate values

        out = einsum(f"b h i j, b h j d -> b h i d", attn, v)

        return out

class LinearAttention(nn.Module):
    def __init__(self, dim, heads = 4, dim_head = 32):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)

        self.to_out = nn.Sequential(
            nn.Conv2d(hidden_dim, dim, 1),
            RMSNorm(dim)
        )

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim = 1)
        q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv)

        q = q.softmax(dim = -2)
        k = k.softmax(dim = -1)

        q = q * self.scale

        context = torch.einsum('b h d n, b h e n -> b h d e', k, v)

        out = torch.einsum('b h d e, b h d n -> b h e n', context, q)
        out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w)
        return self.to_out(out)

class Attention(nn.Module):
    def __init__(self, dim, heads = 4, dim_head = 32):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        hidden_dim = dim_head * heads

        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim = 1)
        q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv)

        q = q * self.scale

        sim = einsum('b h d i, b h d j -> b h i j', q, k)
        attn = sim.softmax(dim = -1)
        out = einsum('b h i j, b h d j -> b h i d', attn, v)

        out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w)
        return self.to_out(out)