KoFace-AI / diffusion_model /models /clip_latent_diffusion_model.py
JuyeopDang's picture
Upload 35 files
5ab5cab verified
import torch
import torch.nn as nn
from auto_encoder.models.variational_auto_encoder import VariationalAutoEncoder
from diffusion_model.models.latent_diffusion_model import LatentDiffusionModel
from clip.models.clip import CLIP
class CLIPLatentDiffusionModel(LatentDiffusionModel) :
def __init__(self, network : nn.Module, sampler : nn.Module,
auto_encoder : VariationalAutoEncoder, clip : CLIP, image_shape):
super().__init__(network, sampler, auto_encoder, image_shape)
self.clip = clip
self.clip.eval()
for param in self.clip.parameters():
param.requires_grad = False
def loss(self, x0, text):
text = self.clip.text_encode(text, tokenize=False)
x0 = self.auto_encoder.encode(x0).sample()
eps = torch.randn_like(x0)
t = torch.randint(0, self.T, (x0.size(0),), device = x0.device)
x_t = self.sampler.q_sample(x0, t, eps)
eps_hat = self.network(x=x_t, t=t, y=text)
return self.weighted_loss(t, eps, eps_hat)
@torch.no_grad()
def forward(self, text, n_samples : int = 4):
text = self.clip.text_encode(text)
text = text.repeat(n_samples, 1)
x_T = torch.randn(n_samples, *self.latent_shape, device = next(self.buffers(), None).device )
sample = self.sampler(x_T = x_T, y=text)
return self.auto_encoder.decode(sample)
@torch.no_grad()
def generate_sequence(self, text, n_samples : int = 4):
text = self.clip.text_encode(text)
text = text.repeat(n_samples, 1)
x_T = torch.randn(n_samples, *self.latent_shape, device = next(self.buffers(), None).device )
sample_sequence = self.sampler.reverse_process(x_T, y = text, only_last=False)
return sample_sequence