Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from auto_encoder.models.variational_auto_encoder import VariationalAutoEncoder | |
from diffusion_model.models.diffusion_model import DiffusionModel | |
class LatentDiffusionModel(DiffusionModel) : | |
def __init__(self, network : nn.Module, sampler : nn.Module, auto_encoder : VariationalAutoEncoder): | |
super().__init__(network, sampler, None) | |
self.auto_encoder = auto_encoder | |
self.auto_encoder.eval() | |
for param in self.auto_encoder.parameters(): | |
param.requires_grad = False | |
# The image shape is the latent shape | |
self.image_shape = [*self.auto_encoder.decoder.z_shape[1:]] | |
self.image_shape[0] = self.auto_encoder.embed_dim | |
def loss(self, x0, **kwargs): | |
x0 = self.auto_encoder.encode(x0).sample() | |
eps = torch.randn_like(x0) | |
t = torch.randint(0, self.T, (x0.size(0),), device = x0.device) | |
x_t = self.sampler.q_sample(x0, t, eps) | |
eps_hat = self.network(x = x_t, t = t, **kwargs) | |
return self.weighted_loss(t, eps, eps_hat) | |
# The forward function outputs the generated latents | |
# Therefore, sample() should be used for sampling data, not latents | |
def sample(self, n_samples: int = 4, gamma = None, **kwargs): | |
sample = self(n_samples, gamma=gamma, **kwargs) | |
return self.auto_encoder.decode(sample) | |
def generate_sequence(self, n_samples: int = 4, gamma = None, **kwargs): | |
sequence = self(n_samples, only_last=False, gamma = gamma, **kwargs) | |
sample = self.auto_encoder.decode(sequence[-1]) | |
return sequence, sample |