Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import yaml | |
class BaseCondEncoder(nn.Module): | |
def __init__( | |
self, | |
config_path | |
): | |
super().__init__() | |
with open(config_path, "r") as file: | |
self.config = yaml.safe_load(file)['cond_encoder'] | |
self.embed_dim = self.config['embed_dim'] | |
self.cond_dim = self.config['cond_dim'] | |
if 'cond_drop_prob' in self.config: | |
self.cond_drop_prob = self.config['cond_drop_prob'] | |
self.null_embedding = nn.Parameter(torch.randn(self.embed_dim)) | |
else: | |
self.cond_drop_prob = 0.0 | |
self.cond_mlp = nn.Sequential( | |
nn.Linear(self.embed_dim, self.cond_dim), | |
nn.GELU(), | |
nn.Linear(self.cond_dim, self.cond_dim) | |
) | |
def cond_drop(self, y: torch.tensor): | |
if self.training and self.cond_drop_prob > 0.0: | |
flags = torch.zeros((y.size(0), ), device=y.device).float().uniform_(0, 1) < self.cond_drop_prob | |
y[flags] = self.null_embedding.to(y.dtype) | |
return y | |
class CLIPEncoder(BaseCondEncoder): | |
def __init__( | |
self, | |
clip, | |
config_path | |
): | |
super().__init__(config_path) | |
self.clip = clip | |
self.clip.eval() | |
for param in self.clip.parameters(): | |
param.requires_grad = False | |
def forward(self, y, cond_drop_all:bool = False): | |
if isinstance(y, str): | |
y = self.clip.text_encode(y, tokenize=True) | |
else: | |
y = self.clip.text_encode(y, tokenize=False) | |
y = self.cond_drop(y) # Only training | |
if cond_drop_all: | |
y[:] = self.null_embedding | |
return self.cond_mlp(y) | |
class ClassEncoder(BaseCondEncoder): | |
def __init__( | |
self, | |
config_path | |
): | |
super().__init__(config_path) | |
self.num_cond = self.config['num_cond'] | |
self.embed = nn.Embedding(self.num_cond, self.embed_dim) | |
def forward(self, y, cond_drop_all:bool = False): | |
y = self.embed(y) | |
y = self.cond_drop(y) # Only training | |
if cond_drop_all: | |
y[:] = self.null_embedding | |
return self.cond_mlp(y) |