KoFace-AI / helper /ema.py
JuyeopDang's picture
Upload 35 files
5ab5cab verified
# https://github.com/lucidrains/ema-pytorch/tree/main
from __future__ import annotations
from typing import Callable
from copy import deepcopy
from functools import partial
import torch
from torch import nn, Tensor
from torch.nn import Module
def exists(val):
return val is not None
def divisible_by(num, den):
return (num % den) == 0
def get_module_device(m: Module):
return next(m.parameters()).device
def maybe_coerce_dtype(t, dtype):
if t.dtype == dtype:
return t
return t.to(dtype)
def inplace_copy(tgt: Tensor, src: Tensor, *, auto_move_device = False, coerce_dtype = False):
if auto_move_device:
src = src.to(tgt.device)
if coerce_dtype:
src = maybe_coerce_dtype(src, tgt.dtype)
tgt.copy_(src)
def inplace_lerp(tgt: Tensor, src: Tensor, weight, *, auto_move_device = False, coerce_dtype = False):
if auto_move_device:
src = src.to(tgt.device)
if coerce_dtype:
src = maybe_coerce_dtype(src, tgt.dtype)
tgt.lerp_(src, weight)
class EMA(Module):
"""
Implements exponential moving average shadowing for your model.
Utilizes an inverse decay schedule to manage longer term training runs.
By adjusting the power, you can control how fast EMA will ramp up to your specified beta.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 2/3.
min_value (float): The minimum EMA decay rate. Default: 0.
"""
def __init__(
self,
model: Module,
ema_model: Module | Callable[[], Module] | None = None, # if your model has lazylinears or other types of non-deepcopyable modules, you can pass in your own ema model
beta = 0.9999,
update_after_step = 100,
update_every = 10,
inv_gamma = 1.0,
power = 2 / 3,
min_value = 0.0,
param_or_buffer_names_no_ema: set[str] = set(),
ignore_names: set[str] = set(),
ignore_startswith_names: set[str] = set(),
include_online_model = True, # set this to False if you do not wish for the online model to be saved along with the ema model (managed externally)
allow_different_devices = False, # if the EMA model is on a different device (say CPU), automatically move the tensor
use_foreach = False,
update_model_with_ema_every = None, # update the model with EMA model weights every number of steps, for better continual learning https://arxiv.org/abs/2406.02596
update_model_with_ema_beta = 0., # amount of model weight to keep when updating to EMA (hare to tortoise)
forward_method_names: tuple[str, ...] = (),
move_ema_to_online_device = False,
coerce_dtype = False,
lazy_init_ema = False,
):
super().__init__()
self.beta = beta
self.is_frozen = beta == 1.
# whether to include the online model within the module tree, so that state_dict also saves it
self.include_online_model = include_online_model
if include_online_model:
self.online_model = model
else:
self.online_model = [model] # hack
# handle callable returning ema module
if not isinstance(ema_model, Module) and callable(ema_model):
ema_model = ema_model()
# ema model
self.ema_model = None
self.forward_method_names = forward_method_names
if not lazy_init_ema:
self.init_ema(ema_model)
else:
assert not exists(ema_model)
# tensor update functions
self.inplace_copy = partial(inplace_copy, auto_move_device = allow_different_devices, coerce_dtype = coerce_dtype)
self.inplace_lerp = partial(inplace_lerp, auto_move_device = allow_different_devices, coerce_dtype = coerce_dtype)
# updating hyperparameters
self.update_every = update_every
self.update_after_step = update_after_step
self.inv_gamma = inv_gamma
self.power = power
self.min_value = min_value
assert isinstance(param_or_buffer_names_no_ema, (set, list))
self.param_or_buffer_names_no_ema = param_or_buffer_names_no_ema # parameter or buffer
self.ignore_names = ignore_names
self.ignore_startswith_names = ignore_startswith_names
# continual learning related
self.update_model_with_ema_every = update_model_with_ema_every
self.update_model_with_ema_beta = update_model_with_ema_beta
# whether to manage if EMA model is kept on a different device
self.allow_different_devices = allow_different_devices
# whether to coerce dtype when copy or lerp from online to EMA model
self.coerce_dtype = coerce_dtype
# whether to move EMA model to online model device automatically
self.move_ema_to_online_device = move_ema_to_online_device
# whether to use foreach
if use_foreach:
assert hasattr(torch, '_foreach_lerp_') and hasattr(torch, '_foreach_copy_'), 'your version of torch does not have the prerequisite foreach functions'
self.use_foreach = use_foreach
# init and step states
self.register_buffer('initted', torch.tensor(False))
self.register_buffer('step', torch.tensor(0))
def init_ema(
self,
ema_model: Module | None = None
):
self.ema_model = ema_model
if not exists(self.ema_model):
try:
self.ema_model = deepcopy(self.model)
except Exception as e:
print(f'Error: While trying to deepcopy model: {e}')
print('Your model was not copyable. Please make sure you are not using any LazyLinear')
exit()
for p in self.ema_model.parameters():
p.detach_()
# forwarding methods
for forward_method_name in self.forward_method_names:
fn = getattr(self.ema_model, forward_method_name)
setattr(self, forward_method_name, fn)
# parameter and buffer names
self.parameter_names = {name for name, param in self.ema_model.named_parameters() if torch.is_floating_point(param) or torch.is_complex(param)}
self.buffer_names = {name for name, buffer in self.ema_model.named_buffers() if torch.is_floating_point(buffer) or torch.is_complex(buffer)}
def add_to_optimizer_post_step_hook(self, optimizer):
assert hasattr(optimizer, 'register_step_post_hook')
def hook(*_):
self.update()
return optimizer.register_step_post_hook(hook)
@property
def model(self):
return self.online_model if self.include_online_model else self.online_model[0]
def eval(self):
return self.ema_model.eval()
@torch.no_grad()
def forward_eval(self, *args, **kwargs):
# handy function for invoking ema model with no grad + eval
training = self.ema_model.training
out = self.ema_model(*args, **kwargs)
self.ema_model.train(training)
return out
def restore_ema_model_device(self):
device = self.initted.device
self.ema_model.to(device)
def get_params_iter(self, model):
for name, param in model.named_parameters():
if name not in self.parameter_names:
continue
yield name, param
def get_buffers_iter(self, model):
for name, buffer in model.named_buffers():
if name not in self.buffer_names:
continue
yield name, buffer
def copy_params_from_model_to_ema(self):
copy = self.inplace_copy
for (_, ma_params), (_, current_params) in zip(self.get_params_iter(self.ema_model), self.get_params_iter(self.model)):
copy(ma_params.data, current_params.data)
for (_, ma_buffers), (_, current_buffers) in zip(self.get_buffers_iter(self.ema_model), self.get_buffers_iter(self.model)):
copy(ma_buffers.data, current_buffers.data)
def copy_params_from_ema_to_model(self):
copy = self.inplace_copy
for (_, ma_params), (_, current_params) in zip(self.get_params_iter(self.ema_model), self.get_params_iter(self.model)):
copy(current_params.data, ma_params.data)
for (_, ma_buffers), (_, current_buffers) in zip(self.get_buffers_iter(self.ema_model), self.get_buffers_iter(self.model)):
copy(current_buffers.data, ma_buffers.data)
def update_model_with_ema(self, decay = None):
if not exists(decay):
decay = self.update_model_with_ema_beta
if decay == 0.:
return self.copy_params_from_ema_to_model()
self.update_moving_average(self.model, self.ema_model, decay)
def get_current_decay(self):
epoch = (self.step - self.update_after_step - 1).clamp(min = 0.)
value = 1 - (1 + epoch / self.inv_gamma) ** - self.power
if epoch.item() <= 0:
return 0.
return value.clamp(min = self.min_value, max = self.beta).item()
def update(self):
step = self.step.item()
self.step += 1
if not self.initted.item():
if not exists(self.ema_model):
self.init_ema()
self.copy_params_from_model_to_ema()
self.initted.data.copy_(torch.tensor(True))
return
should_update = divisible_by(step, self.update_every)
if should_update and step <= self.update_after_step:
self.copy_params_from_model_to_ema()
return
if should_update:
self.update_moving_average(self.ema_model, self.model)
if exists(self.update_model_with_ema_every) and divisible_by(step, self.update_model_with_ema_every):
self.update_model_with_ema()
@torch.no_grad()
def update_moving_average(self, ma_model, current_model, current_decay = None):
if self.is_frozen:
return
# move ema model to online model device if not same and needed
if self.move_ema_to_online_device and get_module_device(ma_model) != get_module_device(current_model):
ma_model.to(get_module_device(current_model))
# get current decay
if not exists(current_decay):
current_decay = self.get_current_decay()
# store all source and target tensors to copy or lerp
tensors_to_copy = []
tensors_to_lerp = []
# loop through parameters
for (name, current_params), (_, ma_params) in zip(self.get_params_iter(current_model), self.get_params_iter(ma_model)):
if name in self.ignore_names:
continue
if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]):
continue
if name in self.param_or_buffer_names_no_ema:
tensors_to_copy.append((ma_params.data, current_params.data))
continue
tensors_to_lerp.append((ma_params.data, current_params.data))
# loop through buffers
for (name, current_buffer), (_, ma_buffer) in zip(self.get_buffers_iter(current_model), self.get_buffers_iter(ma_model)):
if name in self.ignore_names:
continue
if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]):
continue
if name in self.param_or_buffer_names_no_ema:
tensors_to_copy.append((ma_buffer.data, current_buffer.data))
continue
tensors_to_lerp.append((ma_buffer.data, current_buffer.data))
# execute inplace copy or lerp
if not self.use_foreach:
for tgt, src in tensors_to_copy:
self.inplace_copy(tgt, src)
for tgt, src in tensors_to_lerp:
self.inplace_lerp(tgt, src, 1. - current_decay)
else:
# use foreach if available and specified
if self.allow_different_devices:
tensors_to_copy = [(tgt, src.to(tgt.device)) for tgt, src in tensors_to_copy]
tensors_to_lerp = [(tgt, src.to(tgt.device)) for tgt, src in tensors_to_lerp]
if self.coerce_dtype:
tensors_to_copy = [(tgt, maybe_coerce_dtype(src, tgt.dtype)) for tgt, src in tensors_to_copy]
tensors_to_lerp = [(tgt, maybe_coerce_dtype(src, tgt.dtype)) for tgt, src in tensors_to_lerp]
if len(tensors_to_copy) > 0:
tgt_copy, src_copy = zip(*tensors_to_copy)
torch._foreach_copy_(tgt_copy, src_copy)
if len(tensors_to_lerp) > 0:
tgt_lerp, src_lerp = zip(*tensors_to_lerp)
torch._foreach_lerp_(tgt_lerp, src_lerp, 1. - current_decay)
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)