JuyeopDang commited on
Commit
0c39b3b
·
verified ·
1 Parent(s): 8b67aaf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -4
app.py CHANGED
@@ -12,12 +12,14 @@ from diffusion_model.sampler.ddim import DDIM
12
  from diffusion_model.models.latent_diffusion_model import LatentDiffusionModel
13
  from diffusion_model.network.unet import Unet
14
  from diffusion_model.network.unet_wrapper import UnetWrapper
 
15
 
16
  # import spaces #[uncomment to use ZeroGPU]
17
 
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
19
  loader = Loader(device)
20
  repo_id = "JuyeopDang/KoFace-Diffusion"
 
21
 
22
  if torch.cuda.is_available():
23
  torch_dtype = torch.float16
@@ -34,9 +36,6 @@ def load_model_from_HF(model, repo_id, filename, is_ema=False):
34
  return model
35
 
36
  if __name__ == "__main__":
37
- from huggingface_hub import hf_hub_download
38
- CONFIG_PATH = 'configs/composite_config.yaml'
39
-
40
  vae = VariationalAutoEncoder(CONFIG_PATH)
41
  sampler = DDIM(CONFIG_PATH)
42
  clip = KoCLIPWrapper()
@@ -47,5 +46,21 @@ if __name__ == "__main__":
47
  vae = load_model_from_HF(vae, repo_id, "composite_epoch2472.pth", False)
48
  clip = load_model_from_HF(clip, repo_id, "asian-composite-fine-tuned-koclip.pth", True)
49
  dm = load_model_from_HF(dm, repo_id, "asian-composite-clip-ldm.pth", True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- print(dm)
 
 
 
12
  from diffusion_model.models.latent_diffusion_model import LatentDiffusionModel
13
  from diffusion_model.network.unet import Unet
14
  from diffusion_model.network.unet_wrapper import UnetWrapper
15
+ from huggingface_hub import hf_hub_download
16
 
17
  # import spaces #[uncomment to use ZeroGPU]
18
 
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
  loader = Loader(device)
21
  repo_id = "JuyeopDang/KoFace-Diffusion"
22
+ CONFIG_PATH = 'configs/composite_config.yaml'
23
 
24
  if torch.cuda.is_available():
25
  torch_dtype = torch.float16
 
36
  return model
37
 
38
  if __name__ == "__main__":
 
 
 
39
  vae = VariationalAutoEncoder(CONFIG_PATH)
40
  sampler = DDIM(CONFIG_PATH)
41
  clip = KoCLIPWrapper()
 
46
  vae = load_model_from_HF(vae, repo_id, "composite_epoch2472.pth", False)
47
  clip = load_model_from_HF(clip, repo_id, "asian-composite-fine-tuned-koclip.pth", True)
48
  dm = load_model_from_HF(dm, repo_id, "asian-composite-clip-ldm.pth", True)
49
+
50
+ def generate_image(y, gamma, dm):
51
+ images = dm.sample(2, y = y, gamma = gamma)
52
+ images = images.permute(0, 2, 3, 1)
53
+ if type(images) is torch.Tensor:
54
+ images = images.detach().cpu().numpy()
55
+ images = np.clip(images / 2 + 0.5, 0, 1)
56
+ return im.fromarray((images[0] * 255).astype(np.uint8))
57
+
58
+ demo = gr.Interface(
59
+ generate_image,
60
+ inputs=["textbox", gr.Slider(0, 10)],
61
+ outputs=["image"],
62
+ )
63
 
64
+ demo.launch()
65
+
66
+