#source : https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/diffusionmodules/model.py#L368 import torch import torch.nn as nn import numpy as np from auto_encoder.components.normalize import Normalize from auto_encoder.components.resnet_block import ResnetBlock from auto_encoder.components.sampling import Upsample from auto_encoder.components.nonlinearity import nonlinearity class Decoder(nn.Module): def __init__(self, *, in_channels, out_channels, resolution, channels, channel_multipliers = (1, 2, 4, 8), z_channels, num_res_blocks, dropout = 0.0, resample_with_conv : bool = True): super().__init__() self.ch = channels self.num_resolutions = len(channel_multipliers) self.num_res_blocks = num_res_blocks self.in_channels = in_channels self.z_channels = z_channels in_ch_mult = (1 , ) + tuple(channel_multipliers) block_in = self.ch * in_ch_mult[self.num_resolutions - 1] curr_res = resolution // 2 ** (self.num_resolutions - 1) self.z_shape = (1 , z_channels, curr_res, curr_res) print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size = 3, stride = 1, padding = 1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout) self.mid.block_2 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() block_out = self.ch * channel_multipliers[i_level] for i_block in range(self.num_res_blocks + 1): block.append(ResnetBlock(in_channels = block_in, out_channels = block_out, dropout = dropout)) block_in = block_out up = nn.Module() up.block = block if i_level != 0: up.upsample = Upsample(block_in, resample_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_channels, kernel_size = 3, stride = 1, padding = 1) def forward(self, z): assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h) h = self.mid.block_2(h) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h