#source : https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/diffusionmodules/model.py#L368 import torch import torch.nn as nn from auto_encoder.components.normalize import Normalize from auto_encoder.components.resnet_block import ResnetBlock from auto_encoder.components.sampling import Downsample from auto_encoder.components.nonlinearity import nonlinearity class Encoder(nn.Module): def __init__(self, *, in_channels, resolution, channels, channel_multipliers = (1, 2, 4, 8), z_channels, num_res_blocks, dropout = 0.0, resample_with_conv : bool = True, double_z : bool = True): super().__init__() self.ch = channels self.num_resolutions = len(channel_multipliers) self.num_res_blocks = num_res_blocks self.in_channels = in_channels self.z_channels = z_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size = 3, stride = 1, padding = 1) curr_res = resolution in_ch_mult = (1, ) + tuple(channel_multipliers) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() block_in = self.ch * in_ch_mult[i_level] block_out = self.ch * channel_multipliers[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels = block_in, out_channels = block_out, dropout = dropout)) block_in = block_out down = nn.Module() down.block = block if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resample_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout) self.mid.block_2 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2 * z_channels if double_z else z_channels, kernel_size = 3, stride = 1, padding = 1) def forward(self, x): # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1]) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h) h = self.mid.block_2(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h