import torch import torch.nn as nn import torch.nn.functional as F from auto_encoder.models.encoder import Encoder from auto_encoder.models.decoder import Decoder import yaml from auto_encoder.components.distributions import DiagonalGaussianDistribution class VariationalAutoEncoder(nn.Module): def __init__(self, config_path): super().__init__() with open(config_path, "r") as file: config = yaml.safe_load(file) self.add_module('encoder', Encoder(**config["encoder"])) self.add_module('decoder', Decoder(**config["decoder"])) self.embed_dim = config['vae']['embed_dim'] self.kld_weight = float(config['vae']['kld_weight']) self.quant_conv = torch.nn.Conv2d(self.decoder.z_channels, 2*self.embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(self.embed_dim, self.decoder.z_channels, 1) def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def loss(self, x): x_hat, posterior = self(x) return F.mse_loss(x, x_hat) + self.kld_weight * posterior.kl().mean() def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior