# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/attend.py from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from functools import partial # constants AttentionConfig = namedtuple('AttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): return F.normalize(x, dim = 1) * self.g * (x.shape[1] ** 0.5) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False, scale = None ): super().__init__() self.dropout = dropout self.scale = scale self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = AttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) device_version = version.parse(f'{device_properties.major}.{device_properties.minor}') if device_version > version.parse('8.0'): print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = AttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = AttentionConfig(False, True, True) def flash_attn(self, q, k, v): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device if exists(self.scale): default_scale = q.shape[-1] q = q * (self.scale / default_scale) q, k, v = map(lambda t: t.contiguous(), (q, k, v)) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device if self.flash: return self.flash_attn(q, k, v) scale = default(self.scale, q.shape[-1] ** -0.5) # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim = -1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out class LinearAttention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, 1), RMSNorm(dim) ) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q.softmax(dim = -2) k = k.softmax(dim = -1) q = q * self.scale context = torch.einsum('b h d n, b h e n -> b h d e', k, v) out = torch.einsum('b h d e, b h d n -> b h e n', context, q) out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w) return self.to_out(out) class Attention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q * self.scale sim = einsum('b h d i, b h d j -> b h i j', q, k) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h d j -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) return self.to_out(out)