import torch import torch.nn as nn import yaml import transformers class UnetWrapper(nn.Module): def __init__(self, Unet: nn.Module, config_path: str, cond_encoder = None): super().__init__() with open(config_path, "r") as file: config = yaml.safe_load(file)['unet'] self.add_module('network', Unet(**config)) # ConditionalEncoder self.add_module('cond_encoder', cond_encoder) def forward(self, x, t, y=None, cond_drop_all:bool = False): if t.dim() == 0: t = x.new_full((x.size(0), ), t, dtype = torch.int, device = x.device) if y is not None: assert self.cond_encoder is not None, 'You need to set ConditionalEncoder for conditional sampling.' if isinstance(y, str) or isinstance(y, transformers.tokenization_utils_base.BatchEncoding): y = self.cond_encoder(y, cond_drop_all=cond_drop_all).to(x.device) else: if torch.is_tensor(y) == False: y = torch.tensor([y], device=x.device) y = self.cond_encoder(y, cond_drop_all=cond_drop_all).squeeze() if y.size(0) != x.size(0): y = y.repeat(x.size(0), 1) return self.network(x, t, y) else: return self.network(x, t)