# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py#L442 import torch import math class BetaGenerator(): def __init__(self, T) : self.T = T def fixed_beta_schedule(self, beta) : betas = torch.Tensor.repeat(torch.Tensor([beta]) , self.T) return betas def linear_beta_schedule(self): """ linear schedule, proposed in original ddpm paper """ scale = 1000 / self.T beta_start = scale * 0.0001 beta_end = scale * 0.02 return torch.linspace(beta_start, beta_end, self.T) def cosine_beta_schedule(self, s = 0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = self.T + 1 t = torch.linspace(0, self.T, steps, dtype = torch.float32) / self.T alphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return torch.clip(betas, 0, 0.999) def sigmoid_beta_schedule(self, start = -3, end = 3, tau = 1): """ sigmoid schedule proposed in https://arxiv.org/abs/2212.11972 - Figure 8 better for images > 64x64, when used during training """ steps = self.T + 1 t = torch.linspace(0, self.T, steps, dtype = torch.float32) / self.T v_start = torch.tensor(start / tau).sigmoid() v_end = torch.tensor(end / tau).sigmoid() alphas_cumprod = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start) alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return torch.clip(betas, 0, 0.999)