Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,119 @@
|
|
1 |
from huggingfaceinferenceclient import HuggingFaceInferenceClient
|
2 |
from outpaintprocessor import DynamicImageOutpainter
|
3 |
from aivideopipeline import AIImageVideoPipeline
|
4 |
-
from mmig import MultiModelImageGenerator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from huggingfaceinferenceclient import HuggingFaceInferenceClient
|
2 |
from outpaintprocessor import DynamicImageOutpainter
|
3 |
from aivideopipeline import AIImageVideoPipeline
|
4 |
+
from mmig import MultiModelImageGenerator
|
5 |
+
|
6 |
+
|
7 |
+
import os
|
8 |
+
import requests
|
9 |
+
from PIL import Image
|
10 |
+
from io import BytesIO
|
11 |
+
from huggingface_hub import InferenceClient
|
12 |
+
from IPython.display import Audio, display
|
13 |
+
import gradio as gr
|
14 |
+
|
15 |
+
# Whisper for Speech-to-Text
|
16 |
+
WHISPER_API_URL = "https://api-inference.huggingface.co/models/distil-whisper/distil-large-v2"
|
17 |
+
WHISPER_HEADERS = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
|
18 |
+
|
19 |
+
def speech_to_text(filename):
|
20 |
+
with open(filename, "rb") as f:
|
21 |
+
data = f.read()
|
22 |
+
response = requests.post(WHISPER_API_URL, headers=WHISPER_HEADERS, data=data)
|
23 |
+
if response.status_code == 200:
|
24 |
+
return response.json().get("text", "Could not recognize speech")
|
25 |
+
else:
|
26 |
+
print(f"Error: {response.status_code} - {response.text}")
|
27 |
+
return None
|
28 |
+
|
29 |
+
# Chatbot Logic with Hugging Face InferenceClient
|
30 |
+
client = InferenceClient(api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
|
31 |
+
|
32 |
+
def chatbot_logic(input_text):
|
33 |
+
messages = [{"role": "user", "content": input_text}]
|
34 |
+
try:
|
35 |
+
completion = client.chat.completions.create(
|
36 |
+
model="mistralai/Mistral-Nemo-Instruct-2407",
|
37 |
+
messages=messages,
|
38 |
+
max_tokens=500
|
39 |
+
)
|
40 |
+
return completion.choices[0].message["content"]
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error: {e}")
|
43 |
+
return None
|
44 |
+
|
45 |
+
# Bark for Text-to-Speech
|
46 |
+
BARK_API_URL = "https://api-inference.huggingface.co/models/suno/bark"
|
47 |
+
BARK_HEADERS = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
|
48 |
+
|
49 |
+
def text_to_speech(text):
|
50 |
+
payload = {"inputs": text}
|
51 |
+
response = requests.post(BARK_API_URL, headers=BARK_HEADERS, json=payload)
|
52 |
+
if response.status_code == 200:
|
53 |
+
return response.content
|
54 |
+
else:
|
55 |
+
print(f"Error: {response.status_code} - {response.text}")
|
56 |
+
return None
|
57 |
+
|
58 |
+
# Flux for Image Generation
|
59 |
+
FLUX_API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-uncensored"
|
60 |
+
FLUX_HEADERS = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
|
61 |
+
|
62 |
+
def generate_image(prompt):
|
63 |
+
data = {"inputs": prompt}
|
64 |
+
response = requests.post(FLUX_API_URL, headers=FLUX_HEADERS, json=data)
|
65 |
+
if response.status_code == 200:
|
66 |
+
image_bytes = BytesIO(response.content)
|
67 |
+
return Image.open(image_bytes)
|
68 |
+
else:
|
69 |
+
print(f"Error: {response.status_code} - {response.text}")
|
70 |
+
return None
|
71 |
+
|
72 |
+
# Gradio Interface for Chatbot and Image Generator
|
73 |
+
def create_ui():
|
74 |
+
def process_chat(audio_file):
|
75 |
+
# Step 1: Speech to Text
|
76 |
+
recognized_text = speech_to_text(audio_file)
|
77 |
+
if not recognized_text:
|
78 |
+
return "Could not recognize speech", None, None
|
79 |
+
|
80 |
+
# Step 2: Chatbot Logic
|
81 |
+
response_text = chatbot_logic(recognized_text)
|
82 |
+
if not response_text:
|
83 |
+
return f"Error generating response for: {recognized_text}", None, None
|
84 |
+
|
85 |
+
# Step 3: Text to Speech
|
86 |
+
audio_output = text_to_speech(response_text)
|
87 |
+
if not audio_output:
|
88 |
+
return f"Error synthesizing response: {response_text}", None, None
|
89 |
+
|
90 |
+
# Step 4: Image Generation
|
91 |
+
generated_image = generate_image(response_text)
|
92 |
+
|
93 |
+
return response_text, Audio(audio_output, autoplay=True), generated_image
|
94 |
+
|
95 |
+
with gr.Blocks(title="Voice-to-Voice Chatbot with Image Generation") as ui:
|
96 |
+
gr.Markdown("## Voice-to-Voice Chatbot with Image Generation\nUpload an audio file to interact with the chatbot.")
|
97 |
+
|
98 |
+
audio_input = gr.Audio(source="upload", type="filepath", label="Input Audio File")
|
99 |
+
submit_button = gr.Button("Process")
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
chatbot_response = gr.Textbox(label="Chatbot Response", lines=2)
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
audio_output = gr.Audio(label="Generated Audio Response")
|
106 |
+
image_output = gr.Image(label="Generated Image")
|
107 |
+
|
108 |
+
submit_button.click(
|
109 |
+
fn=process_chat,
|
110 |
+
inputs=audio_input,
|
111 |
+
outputs=[chatbot_response, audio_output, image_output],
|
112 |
+
show_progress=True
|
113 |
+
)
|
114 |
+
|
115 |
+
return ui
|
116 |
+
|
117 |
+
# Run the Gradio Interface
|
118 |
+
if __name__ == "__main__":
|
119 |
+
create_ui().launch(debug=True)
|