File size: 4,933 Bytes
71516c7
 
 
 
 
 
 
 
 
268d349
71516c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268d349
 
 
71516c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268d349
 
71516c7
268d349
 
71516c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268d349
 
71516c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268d349
 
 
71516c7
 
 
 
268d349
 
71516c7
268d349
 
 
 
71516c7
 
 
268d349
71516c7
 
 
 
 
 
 
 
 
 
3ecdd58
71516c7
 
 
 
 
 
268d349
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
from huggingface_hub import InferenceClient
import time

# Initialize the client
client = InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")

def respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
    model_name
):
    """
    Generate chat responses using the specified model.
    """
    # Update client if model changes
    global client
    client = InferenceClient(model_name)
    
    messages = [{"role": "system", "content": system_message}]
    
    # Build conversation history
    for human_msg, assistant_msg in chat_history:
        if human_msg:
            messages.append({"role": "user", "content": human_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    
    messages.append({"role": "user", "content": message})
    response = ""
    
    try:
        for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message.choices[0].delta.content
            response += token
            chat_history = chat_history + [(message, response)]
            yield chat_history
    except Exception as e:
        chat_history = chat_history + [(message, f"Error: {str(e)}")]
        yield chat_history

def create_chat_interface():
    """
    Create and configure the Gradio interface
    """
    # Default system message
    default_system = """You are a helpful AI assistant. You provide accurate, informative, and engaging responses while being direct and concise."""
    
    # Available models
    models = [
        "HuggingFaceH4/starchat2-15b-v0.1",
        "meta-llama/Llama-2-70b-chat-hf",
        "mistralai/Mixtral-8x7B-Instruct-v0.1"
    ]

    # Create the interface
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🤖 Advanced AI Chatbot")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    height=600,
                    show_label=False,
                    container=True,
                    scale=2,
                    type="messages"  # Set type to messages format
                )
                msg = gr.Textbox(
                    show_label=False,
                    placeholder="Type your message here...",
                    container=False
                )
                
            with gr.Column(scale=1):
                with gr.Accordion("Settings", open=False):
                    system_msg = gr.Textbox(
                        label="System Message",
                        value=default_system,
                        lines=3
                    )
                    model = gr.Dropdown(
                        choices=models,
                        value=models[0],
                        label="Model"
                    )
                    max_tokens = gr.Slider(
                        minimum=50,
                        maximum=4096,
                        value=1024,
                        step=1,
                        label="Max Tokens"
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=0.7,
                        step=0.1,
                        label="Temperature"
                    )
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.9,
                        step=0.1,
                        label="Top P"
                    )
                
                with gr.Row():
                    clear = gr.Button("Clear Chat")
                    stop = gr.Button("Stop")

        # Initialize chat history
        state = gr.State([])
        
        # Handle sending messages
        msg.submit(
            respond,
            [msg, state, system_msg, max_tokens, temperature, top_p, model],
            [state],
            api_name="chat"
        ).then(
            lambda x: "", 
            [msg], 
            [msg]
        )
        
        # Clear chat history
        clear.click(lambda: [], None, state, queue=False)
        
        # Example prompts
        gr.Examples(
            examples=[
                ["Tell me a short story about a robot learning to paint."],
                ["Explain quantum computing in simple terms."],
                ["Write a haiku about artificial intelligence."]
            ],
            inputs=msg
        )
    print(demo)
    return demo

# Create and launch the interface
if __name__ == "__main__":
    demo = create_chat_interface()
    demo.queue()
    # Disable SSR and sharing for Spaces
    demo.launch(
        share=False,  # Disable sharing on Spaces
    )