K00B404 commited on
Commit
7b9c473
·
verified ·
1 Parent(s): e7080df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import os
2
  os.system('git clone https://github.com/tencent-ailab/IP-Adapter.git')
 
3
  os.system('mv IP-Adapter IP_Adapter')
4
  os.system('ls IP_Adapter/ip_adapter')
5
  import gradio as gr
@@ -16,7 +17,7 @@ base_model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
16
  vae_model_path = "stabilityai/sd-vae-ft-mse"
17
  image_encoder_repo="InvokeAI/ip_adapter_sd_image_encoder"
18
  image_encoder_path = "IP_Adapter/ip_adapter/models/image_encoder/"
19
- ip_ckpt = "https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter_sd15.bin"
20
  device = "cpu" # or "cuda" if using GPU
21
 
22
  # VAE and scheduler
@@ -46,7 +47,7 @@ def generate_variations(upload_img):
46
  vae=vae,
47
  feature_extractor=None,
48
  safety_checker=None,
49
- torch_dtype=torch.float16
50
  )
51
  ip_model = IPAdapter(pipe, image_encoder_repo, ip_ckpt, device)
52
  images = ip_model.generate(pil_image=upload_img, num_samples=4, num_inference_steps=50, seed=42)
@@ -55,7 +56,7 @@ def generate_variations(upload_img):
55
  def generate_img2img(base_img, guide_img):
56
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
57
  base_model_path,
58
- torch_dtype=torch.float16,
59
  scheduler=noise_scheduler,
60
  vae=vae,
61
  feature_extractor=None,
@@ -68,7 +69,7 @@ def generate_img2img(base_img, guide_img):
68
  def generate_inpaint(input_img, masked_img, mask_img):
69
  pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
70
  base_model_path,
71
- torch_dtype=torch.float16,
72
  scheduler=noise_scheduler,
73
  vae=vae,
74
  feature_extractor=None,
 
1
  import os
2
  os.system('git clone https://github.com/tencent-ailab/IP-Adapter.git')
3
+ os.system('wget https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter_sd15.bin')
4
  os.system('mv IP-Adapter IP_Adapter')
5
  os.system('ls IP_Adapter/ip_adapter')
6
  import gradio as gr
 
17
  vae_model_path = "stabilityai/sd-vae-ft-mse"
18
  image_encoder_repo="InvokeAI/ip_adapter_sd_image_encoder"
19
  image_encoder_path = "IP_Adapter/ip_adapter/models/image_encoder/"
20
+ ip_ckpt = "ip-adapter_sd15.bin"
21
  device = "cpu" # or "cuda" if using GPU
22
 
23
  # VAE and scheduler
 
47
  vae=vae,
48
  feature_extractor=None,
49
  safety_checker=None,
50
+ #torch_dtype=torch.float16
51
  )
52
  ip_model = IPAdapter(pipe, image_encoder_repo, ip_ckpt, device)
53
  images = ip_model.generate(pil_image=upload_img, num_samples=4, num_inference_steps=50, seed=42)
 
56
  def generate_img2img(base_img, guide_img):
57
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
58
  base_model_path,
59
+ #torch_dtype=torch.float16,
60
  scheduler=noise_scheduler,
61
  vae=vae,
62
  feature_extractor=None,
 
69
  def generate_inpaint(input_img, masked_img, mask_img):
70
  pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
71
  base_model_path,
72
+ #torch_dtype=torch.float16,
73
  scheduler=noise_scheduler,
74
  vae=vae,
75
  feature_extractor=None,