Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('git clone https://github.com/tencent-ailab/IP-Adapter.git')
|
3 |
+
os.system('mv IP-Adapter IP_Adapter')
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from diffusers import (
|
9 |
+
StableDiffusionPipeline, StableDiffusionImg2ImgPipeline,
|
10 |
+
StableDiffusionInpaintPipelineLegacy, DDIMScheduler, AutoencoderKL
|
11 |
+
)
|
12 |
+
from IP_Adapter.ip_adapter import IPAdapter
|
13 |
+
|
14 |
+
# Paths and device
|
15 |
+
base_model_path = "runwayml/stable-diffusion-v1-5"
|
16 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
17 |
+
image_encoder_path = "models/image_encoder/"
|
18 |
+
ip_ckpt = "models/ip-adapter_sd15.bin"
|
19 |
+
device = "cpu" # or "cuda" if using GPU
|
20 |
+
|
21 |
+
# VAE and scheduler
|
22 |
+
noise_scheduler = DDIMScheduler(
|
23 |
+
num_train_timesteps=1000,
|
24 |
+
beta_start=0.00085,
|
25 |
+
beta_end=0.012,
|
26 |
+
beta_schedule="scaled_linear",
|
27 |
+
clip_sample=False,
|
28 |
+
set_alpha_to_one=False,
|
29 |
+
steps_offset=1,
|
30 |
+
)
|
31 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
32 |
+
|
33 |
+
def image_grid(imgs, rows, cols):
|
34 |
+
assert len(imgs) == rows * cols
|
35 |
+
w, h = imgs[0].size
|
36 |
+
grid = Image.new('RGB', size=(cols * w, rows * h))
|
37 |
+
for i, img in enumerate(imgs):
|
38 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
39 |
+
return grid
|
40 |
+
|
41 |
+
def generate_variations(upload_img):
|
42 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
43 |
+
base_model_path,
|
44 |
+
scheduler=noise_scheduler,
|
45 |
+
vae=vae,
|
46 |
+
feature_extractor=None,
|
47 |
+
safety_checker=None,
|
48 |
+
torch_dtype=torch.float16
|
49 |
+
)
|
50 |
+
ip_model = IPAdapter(pipe, image_encoder_path, ip_ckpt, device)
|
51 |
+
images = ip_model.generate(pil_image=upload_img, num_samples=4, num_inference_steps=50, seed=42)
|
52 |
+
return image_grid(images, 1, 4)
|
53 |
+
|
54 |
+
def generate_img2img(base_img, guide_img):
|
55 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
56 |
+
base_model_path,
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
scheduler=noise_scheduler,
|
59 |
+
vae=vae,
|
60 |
+
feature_extractor=None,
|
61 |
+
safety_checker=None
|
62 |
+
)
|
63 |
+
ip_model = IPAdapter(pipe, image_encoder_path, ip_ckpt, device)
|
64 |
+
images = ip_model.generate(pil_image=base_img, image=guide_img, strength=0.6, num_samples=4, num_inference_steps=50, seed=42)
|
65 |
+
return image_grid(images, 1, 4)
|
66 |
+
|
67 |
+
def generate_inpaint(input_img, masked_img, mask_img):
|
68 |
+
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
|
69 |
+
base_model_path,
|
70 |
+
torch_dtype=torch.float16,
|
71 |
+
scheduler=noise_scheduler,
|
72 |
+
vae=vae,
|
73 |
+
feature_extractor=None,
|
74 |
+
safety_checker=None
|
75 |
+
)
|
76 |
+
ip_model = IPAdapter(pipe, image_encoder_path, ip_ckpt, device)
|
77 |
+
images = ip_model.generate(pil_image=input_img, image=masked_img, mask_image=mask_img,
|
78 |
+
strength=0.7, num_samples=4, num_inference_steps=50, seed=42)
|
79 |
+
return image_grid(images, 1, 4)
|
80 |
+
|
81 |
+
# Gradio Interface
|
82 |
+
with gr.Blocks() as demo:
|
83 |
+
gr.Markdown("# IP-Adapter Image Manipulation Demo")
|
84 |
+
|
85 |
+
with gr.Tab("Image Variations"):
|
86 |
+
with gr.Row():
|
87 |
+
img_input = gr.Image(type="pil", label="Upload Image")
|
88 |
+
img_output = gr.Image(label="Generated Variations")
|
89 |
+
img_btn = gr.Button("Generate Variations")
|
90 |
+
img_btn.click(fn=generate_variations, inputs=img_input, outputs=img_output)
|
91 |
+
|
92 |
+
with gr.Tab("Image-to-Image"):
|
93 |
+
with gr.Row():
|
94 |
+
img1 = gr.Image(type="pil", label="Base Image")
|
95 |
+
img2 = gr.Image(type="pil", label="Guide Image")
|
96 |
+
img2_out = gr.Image(label="Output")
|
97 |
+
btn2 = gr.Button("Generate Img2Img")
|
98 |
+
btn2.click(fn=generate_img2img, inputs=[img1, img2], outputs=img2_out)
|
99 |
+
|
100 |
+
with gr.Tab("Inpainting"):
|
101 |
+
with gr.Row():
|
102 |
+
inpaint_img = gr.Image(type="pil", label="Input Image")
|
103 |
+
masked = gr.Image(type="pil", label="Masked Image")
|
104 |
+
mask = gr.Image(type="pil", label="Mask")
|
105 |
+
inpaint_out = gr.Image(label="Inpainted")
|
106 |
+
btn3 = gr.Button("Generate Inpainting")
|
107 |
+
btn3.click(fn=generate_inpaint, inputs=[inpaint_img, masked, mask], outputs=inpaint_out)
|
108 |
+
|
109 |
+
demo.launch()
|