File size: 12,086 Bytes
3b57e92
 
 
 
 
 
 
 
 
 
2656dce
3b57e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acdfa39
3b57e92
 
 
 
 
 
 
 
 
 
2656dce
3b57e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2656dce
 
3b57e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34787
3b57e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64d98a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import random
import json
from pathlib import Path

import gradio as gr
import httpx
if os.environ.get("IN_SPACES", None) is not None:
    in_spaces = True
    import spaces
    os.system("pip install git+https://${GIT_USER}:${GIT_TOKEN}@github.com/KohakuBlueleaf/XUT")
else:
    in_spaces = False
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from safetensors.torch import load_file
from PIL import Image
from tqdm import trange

try:
    # pre-import triton can avoid diffusers/transformers make import error
    import triton
except ImportError:
    print("Triton not found, skip pre import")

torch.set_float32_matmul_precision("high")

## HDM model dep
import xut.env
xut.env.TORCH_COMPILE = False
xut.env.USE_LIGER = True
xut.env.USE_XFORMERS = False
xut.env.USE_XFORMERS_LAYERS = False
from xut.xut import XUDiT
from transformers import Qwen3Model, Qwen2Tokenizer
from diffusers import AutoencoderKL

## TIPO
import kgen.models as kgen_models
import kgen.executor.tipo as tipo
from kgen.formatter import apply_format, seperate_tags


DEFAULT_FORMAT = """
<|special|>, 
<|characters|>, <|copyrights|>, 
<|artist|>, 
<|quality|>, <|meta|>, <|rating|>,

<|general|>,

<|extended|>.
""".strip()


def GPU(func, duration=None):
    if in_spaces:
        return spaces.GPU(func, duration=duration)
    else:
        return func


def download_model(url: str, filepath: str):
    """Minimal fast download function"""
    if Path(filepath).exists():
        print(f"Model already exists at {filepath}")
        return
    
    print(f"Downloading model...")
    Path(filepath).parent.mkdir(parents=True, exist_ok=True)
    
    with httpx.stream("GET", url, follow_redirects=True) as response:
        response.raise_for_status()
        with open(filepath, "wb") as f:
            for chunk in response.iter_bytes(chunk_size=128 * 1024):
                f.write(chunk)
    print(f"Download completed: {filepath}")


def prompt_opt(tags, nl_prompt, aspect_ratio, seed):
    meta, operations, general, nl_prompt = tipo.parse_tipo_request(
        seperate_tags(tags.split(",")),
        nl_prompt,
        tag_length_target="long",
        nl_length_target="short",
        generate_extra_nl_prompt=True,
    )
    meta["aspect_ratio"] = f"{aspect_ratio:.3f}"
    result, timing = tipo.tipo_runner(meta, operations, general, nl_prompt, seed=seed)
    return apply_format(result, DEFAULT_FORMAT).strip().strip(".").strip(",")


# --- User's core functions (copied directly) ---
def cfg_wrapper(
    prompt: str | list[str],
    neg_prompt: str | list[str],
    unet: nn.Module,  # should be k_diffusion wrapper
    te: Qwen3Model,
    tokenizer: Qwen2Tokenizer,
    cfg_scale: float = 3.0,
):
    prompt_token = {
        k: v.to(device)
        for k, v in 
        tokenizer(
            prompt,
            padding="longest",
            return_tensors="pt",
        ).items()
    }
    neg_prompt_token = {
        k: v.to(device)
        for k, v in 
        tokenizer(
            neg_prompt,
            padding="longest",
            return_tensors="pt",
        ).items()
    }

    emb = te(**prompt_token).last_hidden_state
    neg_emb = te(**neg_prompt_token).last_hidden_state

    if emb.size(1) > neg_emb.size(1):
        pad_setting = (0, 0, 0, emb.size(1) - neg_emb.size(1))
        neg_emb = F.pad(neg_emb, pad_setting)
    if neg_emb.size(1) > emb.size(1):
        pad_setting = (0, 0, 0, neg_emb.size(1) - emb.size(1))
        emb = F.pad(emb, pad_setting)
    text_ctx_emb = torch.concat([emb, neg_emb])

    def cfg_fn(x, t, cfg=cfg_scale):
        cond, uncond = unet(
            x.repeat(2, 1, 1, 1),
            t.expand(x.size(0) * 2),
            text_ctx_emb,
        ).chunk(2)
        cond = cond.float()
        uncond = uncond.float()
        return uncond + (cond - uncond) * cfg

    return cfg_fn



print("Loading models, please wait...")
device = torch.device("cuda")
print("Using device:", torch.cuda.get_device_name(device))

model = XUDiT(
    **json.load(open("./config/xut-small-1024-tread.json", "r"))
).half().requires_grad_(False).eval().to(device)
tokenizer = Qwen2Tokenizer.from_pretrained(
    "Qwen/Qwen3-0.6B",
)
te = Qwen3Model.from_pretrained(
    "Qwen/Qwen3-0.6B",
    torch_dtype=torch.float16,
    attn_implementation="sdpa"
).half().eval().requires_grad_(False).to(device)
vae = AutoencoderKL.from_pretrained(
    "KBlueLeaf/EQ-SDXL-VAE"
).half().eval().requires_grad_(False).to(device)
vae_mean = torch.tensor(vae.config.latents_mean).view(1, -1, 1, 1).to(device)
vae_std = torch.tensor(vae.config.latents_std).view(1, -1, 1, 1).to(device)


if not os.path.exists("./model/model.safetensors"):
    model_file = os.environ.get("MODEL_FILE")
    os.system(f"hfutils download -t model -r KBlueLeaf/XUT-demo -f {model_file} -o model/model.safetensors")

state_dict = load_file("./model/model.safetensors")
model_sd = {k.replace("unet.", ""): v for k, v in state_dict.items() if k.startswith("unet.")}
model_sd = {k.replace("model.", ""): v for k, v in model_sd.items()}
missing, unexpected = model.load_state_dict(model_sd, strict=False)
if missing:
    print(f"Missing keys: {missing}")
if unexpected:
    print(f"Unexpected keys: {unexpected}")


tipo_model_name, gguf_list = kgen_models.tipo_model_list[0]
kgen_models.download_gguf(
    tipo_model_name,
    gguf_list[-1],
)
kgen_models.load_model(
    f"{tipo_model_name}_{gguf_list[-1]}", gguf=True, device="cpu"
)
print("Models loaded successfully. UI is ready.")


@GPU
@torch.no_grad()
def generate(
    nl_prompt: str,
    tag_prompt: str,
    negative_prompt: str,
    num_images: int,
    steps: int,
    cfg_scale: float,
    size: int,
    aspect_ratio: str,
    fixed_short_edge: bool,
    seed: int,
    progress=gr.Progress(),
):
    as_w, as_h = aspect_ratio.split(":")
    aspect_ratio = float(as_w) / float(as_h)
    # Set seed for reproducibility
    if seed == -1:
        seed = random.randint(0, 2**32 - 1)
    torch.manual_seed(seed)

    # TIPO
    tipo.BAN_TAGS = [i.strip() for i in negative_prompt.split(",") if i.strip()]
    final_prompt = prompt_opt(tag_prompt, nl_prompt, aspect_ratio, seed)
    yield None, final_prompt
    all_pil_images = []

    prompts_to_generate = [final_prompt.replace("\n", " ")] * num_images
    negative_prompts_to_generate = [negative_prompt] * num_images

    if fixed_short_edge:
        if aspect_ratio > 1:
            h_factor = 1
            w_factor = aspect_ratio
        else:
            h_factor = 1 / aspect_ratio
            w_factor = 1
    else:
        w_factor = aspect_ratio**0.5
        h_factor = 1 / w_factor

    w = int(size * w_factor / 16) * 2
    h = int(size * h_factor / 16) * 2

    print("=" * 100)
    print(
        f"Generating {num_images} image(s) with seed: {seed} and resolution {w*8}x{h*8}"
    )
    print("-" * 80)
    print(f"Final prompt: {final_prompt}")
    print("-" * 80)
    print(f"Negative prompt: {negative_prompt}")
    print("-" * 80)

    prompts_batch = prompts_to_generate
    neg_prompts_batch = negative_prompts_to_generate

    # Core logic from the original script
    cfg_fn = cfg_wrapper(
        prompts_batch,
        neg_prompts_batch,
        unet=model,
        te=te,
        tokenizer=tokenizer,
        cfg_scale=cfg_scale,
    )
    xt = torch.randn(num_images, 4, h, w).to(device)

    t = 1.0
    dt = 1.0 / steps
    with trange(steps, desc="Generating Steps", smoothing=0.05) as cli_prog_bar:
        for step in progress.tqdm(list(range(steps)), desc="Generating Steps"):
            with torch.autocast(device.type, dtype=torch.float16):
                model_pred = cfg_fn(xt, torch.tensor(t, device=device))
            xt = xt - dt * model_pred.float()
            t -= dt
            cli_prog_bar.update(1)

    generated_latents = xt.float()
    image_tensors = torch.concat(
        [
            vae.decode(
                (
                    generated_latent[None] * vae_std
                    + vae_mean
                ).half()
            ).sample.cpu()
            for generated_latent in generated_latents
        ]
    )

    # Convert tensors to PIL images
    for image_tensor in image_tensors:
        image = Image.fromarray(
            ((image_tensor * 0.5 + 0.5) * 255)
            .clamp(0, 255)
            .numpy()
            .astype(np.uint8)
            .transpose(1, 2, 0)
        )
        all_pil_images.append(image)

    yield all_pil_images, final_prompt


# --- Gradio UI Definition ---
with gr.Blocks(title="HDM Demo", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# HomeDiffusion Gradio UI")
    gr.Markdown(
        "### Enter a natural language prompt and/or specific tags to generate an image."
    )

    with gr.Row():
        with gr.Column(scale=2):
            nl_prompt_box = gr.Textbox(
                label="Natural Language Prompt",
                placeholder="e.g., A beautiful anime girl standing in a blooming cherry blossom forest",
                lines=3,
            )
            tag_prompt_box = gr.Textbox(
                label="Tag Prompt (comma-separated)",
                placeholder="e.g., 1girl, solo, long hair, cherry blossoms, school uniform",
                lines=3,
            )
            neg_prompt_box = gr.Textbox(
                label="Negative Prompt",
                value=(
                    "low quality, worst quality, "
                    "jpeg artifacts, bad anatomy, old, early, "
                    "copyright name, watermark"
                ),
                lines=3,
            )
        with gr.Column(scale=1):
            with gr.Row():
                num_images_slider = gr.Slider(
                    label="Number of Images", minimum=1, maximum=16, value=1, step=1
                )
                steps_slider = gr.Slider(
                    label="Inference Steps", minimum=1, maximum=50, value=32, step=1
                )

            with gr.Row():
                cfg_slider = gr.Slider(
                    label="CFG Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1
                )
                seed_input = gr.Number(
                    label="Seed",
                    value=-1,
                    precision=0,
                    info="Set to -1 for a random seed.",
                )

            with gr.Row():
                size_slider = gr.Slider(
                    label="Base Image Size",
                    minimum=384,
                    maximum=768,
                    value=512,
                    step=64,
                )
            with gr.Row():
                aspect_ratio_box = gr.Textbox(
                    label="Ratio (W:H)",
                    value="1:1",
                )
                fixed_short_edge = gr.Checkbox(
                    label="Fixed Edge",
                    value=True,
                )

            generate_button = gr.Button("Generate", variant="primary")

    with gr.Row():
        with gr.Column(scale=1):
            output_prompt = gr.TextArea(
                label="TIPO Generated Prompt",
                show_label=True,
                interactive=False,
                lines=32,
                max_lines=32,
            )
        with gr.Column(scale=2):
            output_gallery = gr.Gallery(
                label="Generated Images",
                show_label=True,
                elem_id="gallery",
                columns=4,
                rows=3,
                height="800px",
            )
            gr.Markdown("Images are also saved to the `inference_output/` folder.")

    generate_button.click(
        fn=generate,
        inputs=[
            nl_prompt_box,
            tag_prompt_box,
            neg_prompt_box,
            num_images_slider,
            steps_slider,
            cfg_slider,
            size_slider,
            aspect_ratio_box,
            fixed_short_edge,
            seed_input,
        ],
        outputs=[output_gallery, output_prompt],
        show_progress_on=output_gallery,
    )

if __name__ == "__main__":
    demo.launch()