File size: 13,347 Bytes
3b57e92 d71fa96 3b57e92 517b379 3b57e92 df59904 3b57e92 517b379 3b57e92 d71fa96 3b57e92 8401d0b 3b57e92 517b379 2656dce 3b57e92 517b379 3b57e92 517b379 3b57e92 517b379 3b57e92 2bc3bdc 3b57e92 517b379 3b57e92 517b379 3b57e92 2656dce 517b379 3b57e92 517b379 3b57e92 517b379 3b57e92 4393fe6 3b57e92 6932478 3b57e92 6932478 3b57e92 517b379 3b57e92 aa34787 fdedf25 3b57e92 fdedf25 3b57e92 6932478 3b57e92 6932478 3b57e92 6932478 3b57e92 6932478 3b57e92 6932478 3b57e92 64d98a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
import os
import random
import json
from pathlib import Path
from functools import partial
if os.environ.get("IN_SPACES", None) is not None:
in_spaces = True
import spaces
os.system(
"pip install git+https://${GIT_USER}:${GIT_TOKEN}@github.com/KohakuBlueleaf/XUT"
)
else:
in_spaces = False
import gradio as gr
import httpx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from safetensors.torch import load_file
from PIL import Image
from tqdm import trange
try:
# pre-import triton can avoid diffusers/transformers make import error
import triton
except ImportError:
print("Triton not found, skip pre import")
torch.set_float32_matmul_precision("high")
## HDM model dep
import xut.env
xut.env.TORCH_COMPILE = False
xut.env.USE_LIGER = True
xut.env.USE_XFORMERS = False
xut.env.USE_XFORMERS_LAYERS = False
from xut.xut import XUDiT
from transformers import Qwen3Model, Qwen2Tokenizer
from diffusers import AutoencoderKL
## TIPO
import kgen.models as kgen_models
import kgen.executor.tipo as tipo
from kgen.formatter import apply_format, seperate_tags
DEFAULT_FORMAT = """
<|special|>,
<|characters|>, <|copyrights|>,
<|artist|>,
<|quality|>, <|meta|>, <|rating|>,
<|general|>,
<|extended|>.
""".strip()
def GPU(func=None, duration=None):
if func is None:
return partial(GPU, duration=duration)
if in_spaces:
if duration:
return spaces.GPU(func, duration=duration)
else:
return spaces.GPU(func)
else:
return func
def download_model(url: str, filepath: str):
"""Minimal fast download function"""
if Path(filepath).exists():
print(f"Model already exists at {filepath}")
return
print(f"Downloading model...")
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
with httpx.stream("GET", url, follow_redirects=True) as response:
response.raise_for_status()
with open(filepath, "wb") as f:
for chunk in response.iter_bytes(chunk_size=128 * 1024):
f.write(chunk)
print(f"Download completed: {filepath}")
def prompt_opt(tags, nl_prompt, aspect_ratio, seed):
meta, operations, general, nl_prompt = tipo.parse_tipo_request(
seperate_tags(tags.split(",")),
nl_prompt,
tag_length_target="long",
nl_length_target="short",
generate_extra_nl_prompt=True,
)
meta["aspect_ratio"] = f"{aspect_ratio:.3f}"
result, timing = tipo.tipo_runner(meta, operations, general, nl_prompt, seed=seed)
return apply_format(result, DEFAULT_FORMAT).strip().strip(".").strip(",")
# --- User's core functions (copied directly) ---
def cfg_wrapper(
prompt: str | list[str],
neg_prompt: str | list[str],
unet: nn.Module, # should be k_diffusion wrapper
te: Qwen3Model,
tokenizer: Qwen2Tokenizer,
cfg_scale: float = 3.0,
):
prompt_token = {
k: v.to(device)
for k, v in tokenizer(
prompt,
padding="longest",
return_tensors="pt",
).items()
}
neg_prompt_token = {
k: v.to(device)
for k, v in tokenizer(
neg_prompt,
padding="longest",
return_tensors="pt",
).items()
}
emb = te(**prompt_token).last_hidden_state
neg_emb = te(**neg_prompt_token).last_hidden_state
def cfg_fn(x, t, cfg=cfg_scale):
cond = unet(x, t.expand(x.size(0)), emb).float()
uncond = unet(x, t.expand(x.size(0)), neg_emb).float()
return uncond + (cond - uncond) * cfg
return cfg_fn
print("Loading models, please wait...")
device = torch.device("cuda")
model = (
XUDiT(**json.load(open("./config/xut-small-1024-tread.json", "r")))
.half()
.requires_grad_(False)
.eval()
.to(device)
)
tokenizer = Qwen2Tokenizer.from_pretrained(
"Qwen/Qwen3-0.6B",
)
te = (
Qwen3Model.from_pretrained(
"Qwen/Qwen3-0.6B", torch_dtype=torch.float16, attn_implementation="sdpa"
)
.half()
.eval()
.requires_grad_(False)
.to(device)
)
vae = (
AutoencoderKL.from_pretrained("KBlueLeaf/EQ-SDXL-VAE")
.half()
.eval()
.requires_grad_(False)
.to(device)
)
vae_mean = torch.tensor(vae.config.latents_mean).view(1, -1, 1, 1).to(device)
vae_std = torch.tensor(vae.config.latents_std).view(1, -1, 1, 1).to(device)
if not os.path.exists("./model/model.safetensors"):
model_file = os.environ.get("MODEL_FILE")
os.system(
f"hfutils download -t model -r KBlueLeaf/XUT-demo -f {model_file} -o model/model.safetensors"
)
state_dict = load_file("./model/model.safetensors")
model_sd = {
k.replace("unet.", ""): v for k, v in state_dict.items() if k.startswith("unet.")
}
model_sd = {k.replace("model.", ""): v for k, v in model_sd.items()}
missing, unexpected = model.load_state_dict(model_sd, strict=False)
if missing:
print(f"Missing keys: {missing}")
if unexpected:
print(f"Unexpected keys: {unexpected}")
tipo_model_name, gguf_list = kgen_models.tipo_model_list[0]
kgen_models.load_model(tipo_model_name, device="cuda")
print("Models loaded successfully. UI is ready.")
@GPU(duration=5)
@torch.no_grad()
def generate(
nl_prompt: str,
tag_prompt: str,
negative_prompt: str,
tipo_enable: bool,
format_enable: bool,
num_images: int,
steps: int,
cfg_scale: float,
size: int,
aspect_ratio: str,
fixed_short_edge: bool,
seed: int,
progress=gr.Progress(),
):
as_w, as_h = aspect_ratio.split(":")
aspect_ratio = float(as_w) / float(as_h)
# Set seed for reproducibility
if seed == -1:
seed = random.randint(0, 2**32 - 1)
torch.manual_seed(seed)
# TIPO
if tipo_enable:
tipo.BAN_TAGS = [i.strip() for i in negative_prompt.split(",") if i.strip()]
final_prompt = prompt_opt(tag_prompt, nl_prompt, aspect_ratio, seed)
elif format_enable:
final_prompt = apply_format(nl_prompt, DEFAULT_FORMAT)
else:
final_prompt = tag_prompt + "\n" + nl_prompt
yield None, final_prompt
all_pil_images = []
prompts_to_generate = [final_prompt.replace("\n", " ")] * num_images
negative_prompts_to_generate = [negative_prompt] * num_images
if fixed_short_edge:
if aspect_ratio > 1:
h_factor = 1
w_factor = aspect_ratio
else:
h_factor = 1 / aspect_ratio
w_factor = 1
else:
w_factor = aspect_ratio**0.5
h_factor = 1 / w_factor
w = int(size * w_factor / 16) * 2
h = int(size * h_factor / 16) * 2
print("=" * 100)
print(
f"Generating {num_images} image(s) with seed: {seed} and resolution {w*8}x{h*8}"
)
print("-" * 80)
print(f"Final prompt: {final_prompt}")
print("-" * 80)
print(f"Negative prompt: {negative_prompt}")
print("-" * 80)
prompts_batch = prompts_to_generate
neg_prompts_batch = negative_prompts_to_generate
# Core logic from the original script
cfg_fn = cfg_wrapper(
prompts_batch,
neg_prompts_batch,
unet=model,
te=te,
tokenizer=tokenizer,
cfg_scale=cfg_scale,
)
xt = torch.randn(num_images, 4, h, w).to(device)
t = 1.0
dt = 1.0 / steps
with trange(steps, desc="Generating Steps", smoothing=0.05) as cli_prog_bar:
for step in progress.tqdm(list(range(steps)), desc="Generating Steps"):
with torch.autocast(device.type, dtype=torch.float16):
model_pred = cfg_fn(xt, torch.tensor(t, device=device))
xt = xt - dt * model_pred.float()
t -= dt
cli_prog_bar.update(1)
generated_latents = xt.float()
image_tensors = torch.concat(
[
vae.decode(
(generated_latent[None] * vae_std + vae_mean).half()
).sample.cpu()
for generated_latent in generated_latents
]
)
# Convert tensors to PIL images
for image_tensor in image_tensors:
image = Image.fromarray(
((image_tensor * 0.5 + 0.5) * 255)
.clamp(0, 255)
.numpy()
.astype(np.uint8)
.transpose(1, 2, 0)
)
all_pil_images.append(image)
yield all_pil_images, final_prompt
# --- Gradio UI Definition ---
with gr.Blocks(title="HDM Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("# HDM Early Demo")
gr.Markdown(
"### Enter a natural language prompt and/or specific tags to generate an image."
)
with gr.Accordion("Introduction", open=False):
gr.Markdown("""
# HDM: HomeDiffusion Model Project
HDM is a project to implement a series of generative model that can be pretrained at home.
## About this Demo
This DEMO used a checkpoint during training to demostrate the functionality of HDM.
Not final model yet.
## Usage
This early model used a model trained on anime image set only,
so you should expect to see anime style images only in this demo.
For prompting, enter danbooru tag prompt to the box "Tag Prompt" with comma seperated and remove the underscore.
enter natural language prompt to the box "Natural Language Prompt" and enter negative prompt to the box "Negative Prompt".
If you don't want to spent so much effort on prompting, try to keep "Enable TIPO" selected.
If you don't want to apply any pre-defined format, unselect "Enable TIPO" and "Enable Format".
## Model Spec
- Backbone: 342M custom DiT(UViT modified) arch
- Text Encoder: Qwen3 0.6B (596M)
- VAE: EQ-SDXL-VAE, an EQ-VAE finetuned sdxl vae.
## Pretraining Dataset
- Danbooru 2023 (latest id around 8M)
- Pixiv famous artist set
- some pvc figure photos
""")
with gr.Row():
with gr.Column(scale=2):
nl_prompt_box = gr.Textbox(
label="Natural Language Prompt",
placeholder="e.g., A beautiful anime girl standing in a blooming cherry blossom forest",
lines=3,
)
tag_prompt_box = gr.Textbox(
label="Tag Prompt (comma-separated)",
placeholder="e.g., 1girl, solo, long hair, cherry blossoms, school uniform",
lines=3,
)
neg_prompt_box = gr.Textbox(
label="Negative Prompt",
value=(
"low quality, worst quality, "
"jpeg artifacts, bad anatomy, old, early, "
"copyright name, watermark"
),
lines=3,
)
with gr.Row():
tipo_enable = gr.Checkbox(
label="Enable TIPO",
value=True,
)
format_enable = gr.Checkbox(
label="Enable Format",
value=True,
)
with gr.Column(scale=1):
with gr.Row():
num_images_slider = gr.Slider(
label="Number of Images", minimum=1, maximum=16, value=1, step=1
)
steps_slider = gr.Slider(
label="Inference Steps", minimum=1, maximum=64, value=32, step=1
)
with gr.Row():
cfg_slider = gr.Slider(
label="CFG Scale", minimum=1.0, maximum=5.0, value=3.0, step=0.1
)
seed_input = gr.Number(
label="Seed",
value=-1,
precision=0,
info="Set to -1 for a random seed.",
)
with gr.Row():
size_slider = gr.Slider(
label="Base Image Size",
minimum=384,
maximum=768,
value=512,
step=64,
)
with gr.Row():
aspect_ratio_box = gr.Textbox(
label="Ratio (W:H)",
value="1:1",
)
fixed_short_edge = gr.Checkbox(
label="Fixed Edge",
value=True,
)
generate_button = gr.Button("Generate", variant="primary")
with gr.Row():
with gr.Column(scale=1):
output_prompt = gr.TextArea(
label="Final Prompt",
show_label=True,
interactive=False,
lines=32,
max_lines=32,
)
with gr.Column(scale=2):
output_gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=4,
rows=3,
height="800px",
)
generate_button.click(
fn=generate,
inputs=[
nl_prompt_box,
tag_prompt_box,
neg_prompt_box,
tipo_enable,
format_enable,
num_images_slider,
steps_slider,
cfg_slider,
size_slider,
aspect_ratio_box,
fixed_short_edge,
seed_input,
],
outputs=[output_gallery, output_prompt],
show_progress_on=output_gallery,
)
if __name__ == "__main__":
demo.launch()
|