import gradio as gr
import random
import json
from difflib import SequenceMatcher
from jiwer import wer
import torchaudio
from transformers import pipeline
import os
import string
# Load metadata
with open("common_voice_en_validated_249_hf_ready.json") as f:
data = json.load(f)
# Prepare dropdown options
ages = sorted(set(entry["age"] for entry in data))
genders = sorted(set(entry["gender"] for entry in data))
accents = sorted(set(entry["accent"] for entry in data))
# Load ASR pipelines
device = 0
pipe_whisper_medium = pipeline("automatic-speech-recognition", model="openai/whisper-medium", device=device, generate_kwargs={"language": "en"})
pipe_whisper_base = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device, generate_kwargs={"language": "en"})
pipe_whisper_tiny = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device, generate_kwargs={"language": "en"})
pipe_wav2vec2_base_960h = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=device)
pipe_hubert_large_ls960_ft = pipeline("automatic-speech-recognition", model="facebook/hubert-large-ls960-ft", device=device)
# Functions
def convert_to_wav(file_path):
wav_path = file_path.replace(".mp3", ".wav")
if not os.path.exists(wav_path):
waveform, sample_rate = torchaudio.load(file_path)
waveform = waveform.mean(dim=0, keepdim=True)
torchaudio.save(wav_path, waveform, sample_rate)
return wav_path
def transcribe(pipe, file_path):
result = pipe(file_path)
return result["text"].strip().lower()
def highlight_differences(ref, hyp):
sm = SequenceMatcher(None, ref.split(), hyp.split())
result = []
for opcode, i1, i2, j1, j2 in sm.get_opcodes():
if opcode == "equal":
result.extend(hyp.split()[j1:j2])
else:
wrong = hyp.split()[j1:j2]
result.extend([f"{w}" for w in wrong])
return " ".join(result)
def normalize(text):
text = text.lower()
text = text.translate(str.maketrans('', '', string.punctuation))
return text.strip()
# Generate Audio
def generate_audio(age, gender, accent):
filtered = [
entry for entry in data
if entry["age"] == age and entry["gender"] == gender and entry["accent"] == accent
]
if not filtered:
return None, "No matching sample."
sample = random.choice(filtered)
file_path = os.path.join("common_voice_en_validated_249", sample["path"])
wav_file_path = convert_to_wav(file_path)
return wav_file_path, wav_file_path
# Transcribe & Compare
def transcribe_audio(file_path):
if not file_path:
return "No file selected.", "", "", "", "", "", ""
filename_mp3 = os.path.basename(file_path).replace(".wav", ".mp3")
gold = ""
for entry in data:
if entry["path"].endswith(filename_mp3):
gold = normalize(entry["sentence"])
break
if not gold:
return "Reference not found.", "", "", "", "", "", ""
outputs = {}
models = {
"openai/whisper-medium": pipe_whisper_medium,
"openai/whisper-base": pipe_whisper_base,
"openai/whisper-tiny": pipe_whisper_tiny,
"facebook/wav2vec2-base-960h": pipe_wav2vec2_base_960h,
"facebook/hubert-large-ls960-ft": pipe_hubert_large_ls960_ft,
}
for name, model in models.items():
text = transcribe(model, file_path)
clean = normalize(text)
wer_score = wer(gold, clean)
outputs[name] = f"{name} (WER: {wer_score:.2f}):
{highlight_differences(gold, clean)}"
return (gold, *outputs.values())
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Comparing ASR Models on Diverse English Speech Samples")
gr.Markdown("
This demo compares the transcription performance of six automatic speech recognition (ASR) models on audio samples from English learners. "
"Users can select speaker metadata (age, gender, accent) to explore how models handle diverse speech profiles. "
"All samples are drawn from the validated subset (n=249) of the English dataset in the Common Voice Delta Segment 21.0 release.")
with gr.Row():
age = gr.Dropdown(choices=ages, label="Age")
gender = gr.Dropdown(choices=genders, label="Gender")
accent = gr.Dropdown(choices=accents, label="Accent")
generate_btn = gr.Button("Get Audio")
audio_output = gr.Audio(label="Audio", type="filepath", interactive=False)
file_path_output = gr.Textbox(label="Audio File Path", visible=False)
generate_btn.click(generate_audio, [age, gender, accent], [audio_output, file_path_output])
transcribe_btn = gr.Button("Transcribe with All Models")
gold_text = gr.Textbox(label="Reference (Gold Standard)")
whisper_medium_html = gr.HTML(label="Whisper Medium")
whisper_base_html = gr.HTML(label="Whisper Base")
whisper_tiny_html = gr.HTML(label="Whisper Tiny")
wav2vec_html = gr.HTML(label="Wav2Vec2 Base")
hubert_html = gr.HTML(label="HuBERT Large")
transcribe_btn.click(
transcribe_audio,
inputs=[file_path_output],
outputs=[
gold_text,
whisper_medium_html,
whisper_base_html,
whisper_tiny_html,
wav2vec_html,
hubert_html,
],
)
demo.launch()