Spaces:
Sleeping
Sleeping
File size: 6,391 Bytes
ecd47e6 5b7e38a ecd47e6 5b7e38a ecd47e6 5b7e38a ecd47e6 5b7e38a ecd47e6 5b7e38a 4c3ec34 5b7e38a 4c3ec34 5b7e38a 4c3ec34 ecd47e6 4c3ec34 ecd47e6 5b7e38a ecd47e6 4c3ec34 ecd47e6 4c3ec34 ecd47e6 4c3ec34 ecd47e6 4c3ec34 ecd47e6 5b7e38a ecd47e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from openai import OpenAI
from PIL import Image
import io
import base64
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# App version
APP_VERSION = "1.0.0"
logger.info(f"Starting Radiology Teaching App v{APP_VERSION}")
try:
# Load only 10 rows from the dataset
logger.info("Loading MIMIC-CXR dataset...")
dataset = load_dataset("itsanmolgupta/mimic-cxr-dataset", split="train").select(range(10))
df = pd.DataFrame(dataset)
logger.info(f"Successfully loaded {len(df)} cases")
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
raise
def encode_image_to_base64(image_bytes):
return base64.b64encode(image_bytes).decode('utf-8')
def analyze_report(user_findings, ground_truth_findings, ground_truth_impression, api_key):
if not api_key:
return "Please provide a DeepSeek API key to analyze the report."
try:
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
logger.info("Analyzing report with DeepSeek...")
prompt = f"""You are an expert radiologist reviewing a trainee's chest X-ray report.
Trainee's Findings:
{user_findings}
Ground Truth Findings:
{ground_truth_findings}
Ground Truth Impression:
{ground_truth_impression}
Please provide:
1. Number of important findings missed by the trainee (list them)
2. Quality assessment of the trainee's report (structure, completeness, accuracy)
3. Constructive feedback for improvement
Format your response in clear sections."""
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are an expert radiologist providing constructive feedback."},
{"role": "user", "content": prompt}
],
stream=False
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error in report analysis: {str(e)}")
return f"Error analyzing report: {str(e)}"
def load_random_case(hide_ground_truth):
try:
# Randomly select a case from our dataset
random_case = df.sample(n=1).iloc[0]
logger.info("Loading random case...")
# Get the image, findings, and impression
image = random_case['image']
# Store full findings and impression regardless of hide_ground_truth
findings = random_case['findings']
impression = random_case['impression']
# Only hide display if hide_ground_truth is True
display_findings = "" if hide_ground_truth else findings
display_impression = "" if hide_ground_truth else impression
# Return both display values and actual values
return image, display_findings, display_impression, findings, impression
except Exception as e:
logger.error(f"Error loading random case: {str(e)}")
return None, "Error loading case", "Error loading case", "", ""
def process_case(image, user_findings, hide_ground_truth, api_key, current_findings="", current_impression="", actual_findings="", actual_impression=""):
# Use actual findings/impression for analysis if they exist, otherwise fall back to current values
findings_for_analysis = actual_findings if actual_findings else current_findings
impression_for_analysis = actual_impression if actual_impression else current_impression
analysis = analyze_report(user_findings, findings_for_analysis, impression_for_analysis, api_key)
# Return display values based on hide_ground_truth
display_findings = "" if hide_ground_truth else findings_for_analysis
display_impression = "" if hide_ground_truth else impression_for_analysis
return display_findings, display_impression, analysis
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(f"# Radiology Report Training System v{APP_VERSION}")
gr.Markdown("### Practice your chest X-ray reading and reporting skills")
# Add state variables to store actual findings and impression
actual_findings_state = gr.State("")
actual_impression_state = gr.State("")
with gr.Row():
with gr.Column():
image_display = gr.Image(label="Chest X-ray Image", type="pil")
api_key_input = gr.Textbox(label="DeepSeek API Key", type="password")
hide_truth = gr.Checkbox(label="Hide Ground Truth", value=False)
load_btn = gr.Button("Load Random Case")
with gr.Column():
user_findings_input = gr.Textbox(label="Your Findings", lines=10, placeholder="Type or dictate your findings here...")
ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
analysis_output = gr.Textbox(label="Analysis and Feedback", lines=10, interactive=False)
submit_btn = gr.Button("Submit Report")
# Event handlers
load_btn.click(
fn=load_random_case,
inputs=[hide_truth],
outputs=[
image_display,
ground_truth_findings,
ground_truth_impression,
actual_findings_state,
actual_impression_state
]
)
submit_btn.click(
fn=process_case,
inputs=[
image_display,
user_findings_input,
hide_truth,
api_key_input,
ground_truth_findings,
ground_truth_impression,
actual_findings_state,
actual_impression_state
],
outputs=[
ground_truth_findings,
ground_truth_impression,
analysis_output
]
)
hide_truth.change(
fn=lambda x, f, i: ("" if x else f, "" if x else i, ""),
inputs=[hide_truth, actual_findings_state, actual_impression_state],
outputs=[ground_truth_findings, ground_truth_impression, analysis_output]
)
logger.info("Starting Gradio interface...")
demo.launch() |