Spaces:
Sleeping
Sleeping
File size: 4,401 Bytes
ecd47e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from openai import OpenAI
from PIL import Image
import io
import base64
# Load only 10 rows from the dataset
dataset = load_dataset("itsanmolgupta/mimic-cxr-dataset", split="train").select(range(10))
df = pd.DataFrame(dataset)
def encode_image_to_base64(image_bytes):
return base64.b64encode(image_bytes).decode('utf-8')
def analyze_report(user_findings, ground_truth_findings, ground_truth_impression, api_key):
if not api_key:
return "Please provide a DeepSeek API key to analyze the report."
try:
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
prompt = f"""You are an expert radiologist reviewing a trainee's chest X-ray report.
Trainee's Findings:
{user_findings}
Ground Truth Findings:
{ground_truth_findings}
Ground Truth Impression:
{ground_truth_impression}
Please provide:
1. Number of important findings missed by the trainee (list them)
2. Quality assessment of the trainee's report (structure, completeness, accuracy)
3. Constructive feedback for improvement
Format your response in clear sections."""
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are an expert radiologist providing constructive feedback."},
{"role": "user", "content": prompt}
],
stream=False
)
return response.choices[0].message.content
except Exception as e:
return f"Error analyzing report: {str(e)}"
def load_random_case(hide_ground_truth):
# Randomly select a case from our dataset
random_case = df.sample(n=1).iloc[0]
# Get the image, findings, and impression
image = random_case['image']
findings = "" if hide_ground_truth else random_case['findings']
impression = "" if hide_ground_truth else random_case['impression']
return image, findings, impression
def process_case(image, user_findings, hide_ground_truth, api_key, current_findings="", current_impression=""):
if hide_ground_truth:
return "", "", ""
else:
analysis = analyze_report(user_findings, current_findings, current_impression, api_key)
return current_findings, current_impression, analysis
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Radiology Report Training System")
gr.Markdown("### Practice your chest X-ray reading and reporting skills")
with gr.Row():
with gr.Column():
image_display = gr.Image(label="Chest X-ray Image", type="pil")
api_key_input = gr.Textbox(label="DeepSeek API Key", type="password")
hide_truth = gr.Checkbox(label="Hide Ground Truth", value=False)
load_btn = gr.Button("Load Random Case")
with gr.Column():
user_findings_input = gr.Textbox(label="Your Findings", lines=10, placeholder="Type or dictate your findings here...")
ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
analysis_output = gr.Textbox(label="Analysis and Feedback", lines=10, interactive=False)
submit_btn = gr.Button("Submit Report")
# Event handlers
load_btn.click(
fn=load_random_case,
inputs=[hide_truth],
outputs=[image_display, ground_truth_findings, ground_truth_impression]
)
submit_btn.click(
fn=process_case,
inputs=[
image_display,
user_findings_input,
hide_truth,
api_key_input,
ground_truth_findings,
ground_truth_impression
],
outputs=[
ground_truth_findings,
ground_truth_impression,
analysis_output
]
)
hide_truth.change(
fn=lambda x: ("", "", "") if x else (ground_truth_findings.value, ground_truth_impression.value, ""),
inputs=[hide_truth],
outputs=[ground_truth_findings, ground_truth_impression, analysis_output]
)
demo.launch() |