TeachingFiles / app.py
kgupta21
scrollable output
11907c6
import gradio as gr
import pandas as pd
from datasets import load_dataset
from openai import OpenAI
from PIL import Image
import io
import base64
import logging
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from typing import Iterator
import os
import spaces
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# App version
APP_VERSION = "1.0.0"
logger.info(f"Starting Radiology Teaching App v{APP_VERSION}")
# Model configuration
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 5000
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = 0 if torch.cuda.is_available() else "cpu"
# Initialize the LLM
if torch.cuda.is_available():
llm_model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored"
llm = AutoModelForCausalLM.from_pretrained(llm_model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
tokenizer.use_default_system_prompt = False
# Initialize the transcription pipeline
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
try:
# Load only 10 rows from the dataset
logger.info("Loading MIMIC-CXR dataset...")
dataset = load_dataset("itsanmolgupta/mimic-cxr-dataset", split="train").select(range(10))
df = pd.DataFrame(dataset)
logger.info(f"Successfully loaded {len(df)} cases")
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
raise
def encode_image_to_base64(image_bytes):
return base64.b64encode(image_bytes).decode('utf-8')
def analyze_report(user_findings, ground_truth_findings, ground_truth_impression, api_key):
if not api_key:
return "Please provide a DeepSeek API key to analyze the report."
try:
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
logger.info("Analyzing report with DeepSeek...")
prompt = f"""You are an expert radiologist reviewing a trainee's chest X-ray report.
Trainee's Findings:
{user_findings}
Ground Truth Findings:
{ground_truth_findings}
Ground Truth Impression:
{ground_truth_impression}
Please provide:
1. Number of important findings missed by the trainee (list them)
2. Quality assessment of the trainee's report (structure, completeness, accuracy)
3. Constructive feedback for improvement
Format your response in clear sections."""
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are an expert radiologist providing constructive feedback."},
{"role": "user", "content": prompt}
],
stream=False
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error in report analysis: {str(e)}")
return f"Error analyzing report: {str(e)}"
@spaces.GPU
def transcribe(inputs, task="transcribe"):
"""Transcribe audio using Whisper"""
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
try:
logger.info("Transcribing audio...")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
except Exception as e:
logger.error(f"Error in transcription: {str(e)}")
raise gr.Error(f"Transcription failed: {str(e)}")
@spaces.GPU
def analyze_with_llama(
transcribed_text: str,
ground_truth_findings: str,
ground_truth_impression: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
"""Analyze transcribed report against ground truth using Llama"""
task_prompt = f"""You are an expert radiologist. Compare the following transcribed radiology report with the ground truth and provide very concise feedback.
Transcribed Report:
{transcribed_text}
Ground Truth Findings:
{ground_truth_findings}
Ground Truth Impression:
{ground_truth_impression}
Please analyze:
1. Accuracy of findings. Only comment on how the user's transcribed report compares to the ground truth.
2. Completeness of user report compared to ground truth.
3. Structure and clarity of user report compared to ground truth.
4. Areas for improvement for user report compared to ground truth.
Provide concise analysis in a clear, structured format."""
conversation = [
{"role": "system", "content": "You are an expert radiologist providing detailed feedback."},
{"role": "user", "content": task_prompt}
]
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(llm.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=llm.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def load_random_case(hide_ground_truth):
try:
# Randomly select a case from our dataset
random_case = df.sample(n=1).iloc[0]
logger.info("Loading random case...")
# Get the image, findings, and impression
image = random_case['image']
# Store full findings and impression regardless of hide_ground_truth
findings = random_case['findings']
impression = random_case['impression']
# Only hide display if hide_ground_truth is True
display_findings = "" if hide_ground_truth else findings
display_impression = "" if hide_ground_truth else impression
# Return both display values and actual values
return image, display_findings, display_impression, findings, impression
except Exception as e:
logger.error(f"Error loading random case: {str(e)}")
return None, "Error loading case", "Error loading case", "", ""
def process_case(image, user_findings, hide_ground_truth, api_key, current_findings="", current_impression="", actual_findings="", actual_impression=""):
# Use actual findings/impression for analysis if they exist, otherwise fall back to current values
findings_for_analysis = actual_findings if actual_findings else current_findings
impression_for_analysis = actual_impression if actual_impression else current_impression
analysis = analyze_report(user_findings, findings_for_analysis, impression_for_analysis, api_key)
# Return display values based on hide_ground_truth
display_findings = "" if hide_ground_truth else findings_for_analysis
display_impression = "" if hide_ground_truth else impression_for_analysis
return display_findings, display_impression, analysis
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(f"# Radiology Report Training System v{APP_VERSION}")
gr.Markdown("### Practice your chest X-ray reading and reporting skills")
# Add state variables to store actual findings and impression
actual_findings_state = gr.State("")
actual_impression_state = gr.State("")
with gr.Tab("DeepSeek Analysis"):
with gr.Row():
with gr.Column():
image_display = gr.Image(label="Chest X-ray Image", type="pil")
api_key_input = gr.Textbox(label="DeepSeek API Key", type="password")
hide_truth = gr.Checkbox(label="Hide Ground Truth", value=False)
load_btn = gr.Button("Load Random Case")
with gr.Column():
user_findings_input = gr.Textbox(label="Your Findings", lines=10, placeholder="Type or dictate your findings here...")
ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
analysis_output = gr.Textbox(label="Analysis and Feedback", lines=10, interactive=False)
submit_btn = gr.Button("Submit Report")
with gr.Tab("Local Inference"):
gr.Markdown("### Use Local Models for Transcription and Analysis")
with gr.Row():
with gr.Column():
# Transcription Interface
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or Upload Audio")
task_input = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
transcribe_button = gr.Button("Transcribe Audio")
transcription_output = gr.Textbox(label="Transcription Output", lines=5)
# Load case for comparison
load_case_btn = gr.Button("Load Random Case for Comparison")
local_image_display = gr.Image(label="Chest X-ray Image", type="pil")
local_ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
local_ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
with gr.Column():
# Editable transcription and analysis interface
edited_transcription = gr.Textbox(label="Edit Transcription", lines=10)
temperature_input = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, value=0.6, step=0.1)
top_p_input = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, value=0.9, step=0.05)
top_k_input = gr.Slider(label="Top-k", minimum=1, maximum=1000, value=50, step=1)
max_tokens_input = gr.Slider(label="Max Tokens", minimum=256, maximum=2048, value=1024, step=128)
repetition_penalty_input = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, value=1.2, step=0.05)
analyze_btn = gr.Button("Analyze with Llama")
llama_analysis_output = gr.Textbox(
label="Llama Analysis Output",
lines=8,
max_lines=8,
show_copy_button=True,
interactive=False,
autoscroll=False
)
# Event handlers for Local Inference tab
transcribe_button.click(
fn=transcribe,
inputs=[audio_input, task_input],
outputs=transcription_output
)
# Copy transcription to editable box
transcription_output.change(
fn=lambda x: x,
inputs=[transcription_output],
outputs=[edited_transcription]
)
# Load case for local analysis
load_case_btn.click(
fn=load_random_case,
inputs=[gr.Checkbox(value=False, visible=False)], # Hidden checkbox for hide_ground_truth
outputs=[
local_image_display,
local_ground_truth_findings,
local_ground_truth_impression,
gr.State(), # Hidden state
gr.State() # Hidden state
]
)
# Analyze with Llama
analyze_btn.click(
fn=analyze_with_llama,
inputs=[
edited_transcription,
local_ground_truth_findings,
local_ground_truth_impression,
max_tokens_input,
temperature_input,
top_p_input,
top_k_input,
repetition_penalty_input
],
outputs=llama_analysis_output
)
# Event handlers for DeepSeek Analysis tab
load_btn.click(
fn=load_random_case,
inputs=[hide_truth],
outputs=[
image_display,
ground_truth_findings,
ground_truth_impression,
actual_findings_state,
actual_impression_state
]
)
submit_btn.click(
fn=process_case,
inputs=[
image_display,
user_findings_input,
hide_truth,
api_key_input,
ground_truth_findings,
ground_truth_impression,
actual_findings_state,
actual_impression_state
],
outputs=[
ground_truth_findings,
ground_truth_impression,
analysis_output
]
)
hide_truth.change(
fn=lambda x, f, i: ("" if x else f, "" if x else i, ""),
inputs=[hide_truth, actual_findings_state, actual_impression_state],
outputs=[ground_truth_findings, ground_truth_impression, analysis_output]
)
logger.info("Starting Gradio interface...")
demo.queue().launch()