Spaces:
Sleeping
Sleeping
kgupta21
commited on
Commit
·
41cd3de
1
Parent(s):
45177a3
local inference page
Browse files- .gitignore +44 -0
- app.py +193 -14
- requirements.txt +4 -1
.gitignore
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Virtual Environment
|
24 |
+
venv/
|
25 |
+
ENV/
|
26 |
+
env/
|
27 |
+
|
28 |
+
# IDE
|
29 |
+
.idea/
|
30 |
+
.vscode/
|
31 |
+
*.swp
|
32 |
+
*.swo
|
33 |
+
|
34 |
+
# Logs
|
35 |
+
*.log
|
36 |
+
|
37 |
+
# Local development
|
38 |
+
.env
|
39 |
+
.env.local
|
40 |
+
.env.*.local
|
41 |
+
|
42 |
+
# Misc
|
43 |
+
.DS_Store
|
44 |
+
Thumbs.db
|
app.py
CHANGED
@@ -6,6 +6,11 @@ from PIL import Image
|
|
6 |
import io
|
7 |
import base64
|
8 |
import logging
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
@@ -15,6 +20,40 @@ logger = logging.getLogger(__name__)
|
|
15 |
APP_VERSION = "1.0.0"
|
16 |
logger.info(f"Starting Radiology Teaching App v{APP_VERSION}")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
# Load only 10 rows from the dataset
|
20 |
logger.info("Loading MIMIC-CXR dataset...")
|
@@ -68,6 +107,81 @@ def analyze_report(user_findings, ground_truth_findings, ground_truth_impression
|
|
68 |
logger.error(f"Error in report analysis: {str(e)}")
|
69 |
return f"Error analyzing report: {str(e)}"
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def load_random_case(hide_ground_truth):
|
72 |
try:
|
73 |
# Randomly select a case from our dataset
|
@@ -112,21 +226,86 @@ with gr.Blocks() as demo:
|
|
112 |
actual_findings_state = gr.State("")
|
113 |
actual_impression_state = gr.State("")
|
114 |
|
115 |
-
with gr.
|
116 |
-
with gr.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
load_btn.click(
|
131 |
fn=load_random_case,
|
132 |
inputs=[hide_truth],
|
|
|
6 |
import io
|
7 |
import base64
|
8 |
import logging
|
9 |
+
import torch
|
10 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
11 |
+
from threading import Thread
|
12 |
+
from typing import Iterator
|
13 |
+
import os
|
14 |
|
15 |
# Set up logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
|
|
20 |
APP_VERSION = "1.0.0"
|
21 |
logger.info(f"Starting Radiology Teaching App v{APP_VERSION}")
|
22 |
|
23 |
+
# Initialize models for local inference
|
24 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
25 |
+
logger.info(f"Using device: {device}")
|
26 |
+
|
27 |
+
# Initialize Whisper
|
28 |
+
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
29 |
+
BATCH_SIZE = 8
|
30 |
+
FILE_LIMIT_MB = 5000
|
31 |
+
|
32 |
+
try:
|
33 |
+
logger.info("Initializing Whisper model...")
|
34 |
+
pipe = pipeline(
|
35 |
+
task="automatic-speech-recognition",
|
36 |
+
model=MODEL_NAME,
|
37 |
+
chunk_length_s=30,
|
38 |
+
device=device,
|
39 |
+
)
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"Error initializing Whisper model: {str(e)}")
|
42 |
+
pipe = None
|
43 |
+
|
44 |
+
# Initialize Llama
|
45 |
+
try:
|
46 |
+
logger.info("Initializing Llama model...")
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
llm_model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored"
|
49 |
+
llm = AutoModelForCausalLM.from_pretrained(llm_model_id, torch_dtype=torch.float16, device_map="auto")
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
|
51 |
+
tokenizer.use_default_system_prompt = False
|
52 |
+
except Exception as e:
|
53 |
+
logger.error(f"Error initializing Llama model: {str(e)}")
|
54 |
+
llm = None
|
55 |
+
tokenizer = None
|
56 |
+
|
57 |
try:
|
58 |
# Load only 10 rows from the dataset
|
59 |
logger.info("Loading MIMIC-CXR dataset...")
|
|
|
107 |
logger.error(f"Error in report analysis: {str(e)}")
|
108 |
return f"Error analyzing report: {str(e)}"
|
109 |
|
110 |
+
def transcribe(inputs, task="transcribe"):
|
111 |
+
"""Transcribe audio using Whisper"""
|
112 |
+
if inputs is None:
|
113 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
114 |
+
if pipe is None:
|
115 |
+
raise gr.Error("Whisper model not initialized properly!")
|
116 |
+
|
117 |
+
try:
|
118 |
+
logger.info("Transcribing audio...")
|
119 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
120 |
+
return text
|
121 |
+
except Exception as e:
|
122 |
+
logger.error(f"Error in transcription: {str(e)}")
|
123 |
+
raise gr.Error(f"Transcription failed: {str(e)}")
|
124 |
+
|
125 |
+
def analyze_with_llama(
|
126 |
+
transcribed_text: str,
|
127 |
+
ground_truth_findings: str,
|
128 |
+
ground_truth_impression: str,
|
129 |
+
max_new_tokens: int = 1024,
|
130 |
+
temperature: float = 0.6,
|
131 |
+
) -> Iterator[str]:
|
132 |
+
"""Analyze transcribed report against ground truth using Llama"""
|
133 |
+
if llm is None or tokenizer is None:
|
134 |
+
raise gr.Error("Llama model not initialized properly!")
|
135 |
+
|
136 |
+
try:
|
137 |
+
task_prompt = f"""You are an expert radiologist. Compare the following transcribed radiology report with the ground truth and provide detailed feedback.
|
138 |
+
|
139 |
+
Transcribed Report:
|
140 |
+
{transcribed_text}
|
141 |
+
|
142 |
+
Ground Truth Findings:
|
143 |
+
{ground_truth_findings}
|
144 |
+
|
145 |
+
Ground Truth Impression:
|
146 |
+
{ground_truth_impression}
|
147 |
+
|
148 |
+
Please analyze:
|
149 |
+
1. Accuracy of findings
|
150 |
+
2. Completeness of report
|
151 |
+
3. Structure and clarity
|
152 |
+
4. Areas for improvement
|
153 |
+
|
154 |
+
Provide your analysis in a clear, structured format."""
|
155 |
+
|
156 |
+
conversation = [
|
157 |
+
{"role": "system", "content": "You are an expert radiologist providing detailed feedback."},
|
158 |
+
{"role": "user", "content": task_prompt}
|
159 |
+
]
|
160 |
+
|
161 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
162 |
+
input_ids = input_ids.to(llm.device)
|
163 |
+
|
164 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
165 |
+
generate_kwargs = dict(
|
166 |
+
input_ids=input_ids,
|
167 |
+
streamer=streamer,
|
168 |
+
max_new_tokens=max_new_tokens,
|
169 |
+
do_sample=True,
|
170 |
+
temperature=temperature,
|
171 |
+
num_beams=1,
|
172 |
+
)
|
173 |
+
|
174 |
+
t = Thread(target=llm.generate, kwargs=generate_kwargs)
|
175 |
+
t.start()
|
176 |
+
|
177 |
+
outputs = []
|
178 |
+
for text in streamer:
|
179 |
+
outputs.append(text)
|
180 |
+
yield "".join(outputs)
|
181 |
+
except Exception as e:
|
182 |
+
logger.error(f"Error in Llama analysis: {str(e)}")
|
183 |
+
raise gr.Error(f"Analysis failed: {str(e)}")
|
184 |
+
|
185 |
def load_random_case(hide_ground_truth):
|
186 |
try:
|
187 |
# Randomly select a case from our dataset
|
|
|
226 |
actual_findings_state = gr.State("")
|
227 |
actual_impression_state = gr.State("")
|
228 |
|
229 |
+
with gr.Tab("DeepSeek Analysis"):
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column():
|
232 |
+
image_display = gr.Image(label="Chest X-ray Image", type="pil")
|
233 |
+
api_key_input = gr.Textbox(label="DeepSeek API Key", type="password")
|
234 |
+
hide_truth = gr.Checkbox(label="Hide Ground Truth", value=False)
|
235 |
+
load_btn = gr.Button("Load Random Case")
|
236 |
+
|
237 |
+
with gr.Column():
|
238 |
+
user_findings_input = gr.Textbox(label="Your Findings", lines=10, placeholder="Type or dictate your findings here...")
|
239 |
+
ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
|
240 |
+
ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
|
241 |
+
analysis_output = gr.Textbox(label="Analysis and Feedback", lines=10, interactive=False)
|
242 |
+
submit_btn = gr.Button("Submit Report")
|
243 |
+
|
244 |
+
with gr.Tab("Local Inference"):
|
245 |
+
gr.Markdown("### Use Local Models for Transcription and Analysis")
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column():
|
249 |
+
# Transcription Interface
|
250 |
+
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or Upload Audio")
|
251 |
+
task_input = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
252 |
+
transcribe_button = gr.Button("Transcribe Audio")
|
253 |
+
transcription_output = gr.Textbox(label="Transcription Output", lines=5)
|
254 |
+
|
255 |
+
# Load case for comparison
|
256 |
+
load_case_btn = gr.Button("Load Random Case for Comparison")
|
257 |
+
local_ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
|
258 |
+
local_ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
|
259 |
+
|
260 |
+
with gr.Column():
|
261 |
+
# Editable transcription and analysis interface
|
262 |
+
edited_transcription = gr.Textbox(label="Edit Transcription", lines=10)
|
263 |
+
temperature_input = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.6, step=0.1)
|
264 |
+
max_tokens_input = gr.Slider(label="Max Tokens", minimum=256, maximum=2048, value=1024, step=128)
|
265 |
+
analyze_btn = gr.Button("Analyze with Llama")
|
266 |
+
llama_analysis_output = gr.Textbox(label="Llama Analysis Output", lines=15, interactive=False)
|
267 |
+
|
268 |
+
# Event handlers for Local Inference tab
|
269 |
+
transcribe_button.click(
|
270 |
+
fn=transcribe,
|
271 |
+
inputs=[audio_input, task_input],
|
272 |
+
outputs=transcription_output
|
273 |
+
)
|
274 |
+
|
275 |
+
# Copy transcription to editable box
|
276 |
+
transcription_output.change(
|
277 |
+
fn=lambda x: x,
|
278 |
+
inputs=[transcription_output],
|
279 |
+
outputs=[edited_transcription]
|
280 |
+
)
|
281 |
|
282 |
+
# Load case for local analysis
|
283 |
+
load_case_btn.click(
|
284 |
+
fn=load_random_case,
|
285 |
+
inputs=[gr.Checkbox(value=False, visible=False)], # Hidden checkbox for hide_ground_truth
|
286 |
+
outputs=[
|
287 |
+
gr.Image(visible=False), # Hidden image output
|
288 |
+
local_ground_truth_findings,
|
289 |
+
local_ground_truth_impression,
|
290 |
+
gr.State(), # Hidden state
|
291 |
+
gr.State() # Hidden state
|
292 |
+
]
|
293 |
+
)
|
294 |
+
|
295 |
+
# Analyze with Llama
|
296 |
+
analyze_btn.click(
|
297 |
+
fn=analyze_with_llama,
|
298 |
+
inputs=[
|
299 |
+
edited_transcription,
|
300 |
+
local_ground_truth_findings,
|
301 |
+
local_ground_truth_impression,
|
302 |
+
max_tokens_input,
|
303 |
+
temperature_input
|
304 |
+
],
|
305 |
+
outputs=llama_analysis_output
|
306 |
+
)
|
307 |
+
|
308 |
+
# Event handlers for DeepSeek Analysis tab
|
309 |
load_btn.click(
|
310 |
fn=load_random_case,
|
311 |
inputs=[hide_truth],
|
requirements.txt
CHANGED
@@ -3,4 +3,7 @@ pandas>=2.0.0
|
|
3 |
datasets>=2.15.0
|
4 |
openai>=1.0.0
|
5 |
Pillow>=10.0.0
|
6 |
-
huggingface-hub>=0.20.0
|
|
|
|
|
|
|
|
3 |
datasets>=2.15.0
|
4 |
openai>=1.0.0
|
5 |
Pillow>=10.0.0
|
6 |
+
huggingface-hub>=0.20.0
|
7 |
+
torch>=2.0.0
|
8 |
+
transformers>=4.36.0
|
9 |
+
spaces>=0.19.3
|