import gradio as gr import pandas as pd from datasets import load_dataset from openai import OpenAI from PIL import Image import io import base64 # Load only 10 rows from the dataset dataset = load_dataset("itsanmolgupta/mimic-cxr-dataset", split="train").select(range(10)) df = pd.DataFrame(dataset) def encode_image_to_base64(image_bytes): return base64.b64encode(image_bytes).decode('utf-8') def analyze_report(user_findings, ground_truth_findings, ground_truth_impression, api_key): if not api_key: return "Please provide a DeepSeek API key to analyze the report." try: client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com") prompt = f"""You are an expert radiologist reviewing a trainee's chest X-ray report. Trainee's Findings: {user_findings} Ground Truth Findings: {ground_truth_findings} Ground Truth Impression: {ground_truth_impression} Please provide: 1. Number of important findings missed by the trainee (list them) 2. Quality assessment of the trainee's report (structure, completeness, accuracy) 3. Constructive feedback for improvement Format your response in clear sections.""" response = client.chat.completions.create( model="deepseek-chat", messages=[ {"role": "system", "content": "You are an expert radiologist providing constructive feedback."}, {"role": "user", "content": prompt} ], stream=False ) return response.choices[0].message.content except Exception as e: return f"Error analyzing report: {str(e)}" def load_random_case(hide_ground_truth): # Randomly select a case from our dataset random_case = df.sample(n=1).iloc[0] # Get the image, findings, and impression image = random_case['image'] findings = "" if hide_ground_truth else random_case['findings'] impression = "" if hide_ground_truth else random_case['impression'] return image, findings, impression def process_case(image, user_findings, hide_ground_truth, api_key, current_findings="", current_impression=""): if hide_ground_truth: return "", "", "" else: analysis = analyze_report(user_findings, current_findings, current_impression, api_key) return current_findings, current_impression, analysis # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Radiology Report Training System") gr.Markdown("### Practice your chest X-ray reading and reporting skills") with gr.Row(): with gr.Column(): image_display = gr.Image(label="Chest X-ray Image", type="pil") api_key_input = gr.Textbox(label="DeepSeek API Key", type="password") hide_truth = gr.Checkbox(label="Hide Ground Truth", value=False) load_btn = gr.Button("Load Random Case") with gr.Column(): user_findings_input = gr.Textbox(label="Your Findings", lines=10, placeholder="Type or dictate your findings here...") ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False) ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False) analysis_output = gr.Textbox(label="Analysis and Feedback", lines=10, interactive=False) submit_btn = gr.Button("Submit Report") # Event handlers load_btn.click( fn=load_random_case, inputs=[hide_truth], outputs=[image_display, ground_truth_findings, ground_truth_impression] ) submit_btn.click( fn=process_case, inputs=[ image_display, user_findings_input, hide_truth, api_key_input, ground_truth_findings, ground_truth_impression ], outputs=[ ground_truth_findings, ground_truth_impression, analysis_output ] ) hide_truth.change( fn=lambda x: ("", "", "") if x else (ground_truth_findings.value, ground_truth_impression.value, ""), inputs=[hide_truth], outputs=[ground_truth_findings, ground_truth_impression, analysis_output] ) demo.launch()