|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
|
|
import numpy |
|
import torch |
|
import torch.utils.checkpoint |
|
import torch.distributed |
|
import numpy as np |
|
import transformers |
|
from PIL import Image |
|
from einops import rearrange |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
from typing import Any, Callable, Dict, List, Optional, Union, Tuple |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DiffusionPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.image_processor import VaeImageProcessor |
|
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( |
|
StableDiffusionPipeline, |
|
retrieve_timesteps, |
|
rescale_noise_cfg, |
|
) |
|
|
|
from diffusers.utils import deprecate |
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput |
|
from .unet.modules import UNet2p5DConditionModel |
|
from .unet.attn_processor import SelfAttnProcessor2_0, RefAttnProcessor2_0, PoseRoPEAttnProcessor2_0 |
|
|
|
__all__ = [ |
|
"HunyuanPaintPipeline", |
|
"UNet2p5DConditionModel", |
|
"SelfAttnProcessor2_0", |
|
"RefAttnProcessor2_0", |
|
"PoseRoPEAttnProcessor2_0", |
|
] |
|
|
|
|
|
def to_rgb_image(maybe_rgba: Image.Image): |
|
if maybe_rgba.mode == "RGB": |
|
return maybe_rgba |
|
elif maybe_rgba.mode == "RGBA": |
|
rgba = maybe_rgba |
|
img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8) |
|
img = Image.fromarray(img, "RGB") |
|
img.paste(rgba, mask=rgba.getchannel("A")) |
|
return img |
|
else: |
|
raise ValueError("Unsupported image type.", maybe_rgba.mode) |
|
|
|
|
|
class HunyuanPaintPipeline(StableDiffusionPipeline): |
|
|
|
"""Custom pipeline for multiview PBR texture generation. |
|
|
|
Extends Stable Diffusion with: |
|
- Material-specific conditioning |
|
- Multiview processing |
|
- Position-aware attention |
|
- 2.5D UNet integration |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
feature_extractor: CLIPImageProcessor, |
|
safety_checker=None, |
|
use_torch_compile=False, |
|
): |
|
DiffusionPipeline.__init__(self) |
|
|
|
safety_checker = None |
|
self.register_modules( |
|
vae=torch.compile(vae) if use_torch_compile else vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=torch.compile(feature_extractor) if use_torch_compile else feature_extractor, |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
if isinstance(self.unet, UNet2DConditionModel): |
|
self.unet = UNet2p5DConditionModel(self.unet, None, self.scheduler) |
|
|
|
def eval(self): |
|
self.unet.eval() |
|
self.vae.eval() |
|
|
|
def set_pbr_settings(self, pbr_settings: List[str]): |
|
self.pbr_settings = pbr_settings |
|
|
|
def set_learned_parameters(self): |
|
|
|
"""Configures parameter freezing strategy. |
|
|
|
Freezes: |
|
- Standard attention layers |
|
- Dual-stream reference UNet |
|
|
|
Unfreezes: |
|
- Material-specific parameters |
|
- DINO integration components |
|
""" |
|
|
|
freezed_names = ["attn1", "unet_dual"] |
|
added_learned_names = ["albedo", "mr", "dino"] |
|
|
|
for name, params in self.unet.named_parameters(): |
|
if any(freeze_name in name for freeze_name in freezed_names) and all( |
|
learned_name not in name for learned_name in added_learned_names |
|
): |
|
params.requires_grad = False |
|
else: |
|
params.requires_grad = True |
|
|
|
def prepare(self): |
|
if isinstance(self.unet, UNet2DConditionModel): |
|
self.unet = UNet2p5DConditionModel(self.unet, None, self.scheduler).eval() |
|
|
|
@torch.no_grad() |
|
def encode_images(self, images): |
|
|
|
"""Encodes multiview image batches into latent space. |
|
|
|
Args: |
|
images: Input images [B, N_views, C, H, W] |
|
|
|
Returns: |
|
torch.Tensor: Latent representations [B, N_views, C, H_latent, W_latent] |
|
""" |
|
|
|
B = images.shape[0] |
|
images = rearrange(images, "b n c h w -> (b n) c h w") |
|
|
|
dtype = next(self.vae.parameters()).dtype |
|
images = (images - 0.5) * 2.0 |
|
posterior = self.vae.encode(images.to(dtype)).latent_dist |
|
latents = posterior.sample() * self.vae.config.scaling_factor |
|
|
|
latents = rearrange(latents, "(b n) c h w -> b n c h w", b=B) |
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
images=None, |
|
prompt=None, |
|
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast", |
|
*args, |
|
num_images_per_prompt: Optional[int] = 1, |
|
guidance_scale=3.0, |
|
output_type: Optional[str] = "pil", |
|
width=512, |
|
height=512, |
|
num_inference_steps=15, |
|
return_dict=True, |
|
sync_condition=None, |
|
**cached_condition, |
|
): |
|
|
|
"""Main generation method for multiview PBR textures. |
|
|
|
Steps: |
|
1. Input validation and preparation |
|
2. Reference image encoding |
|
3. Condition processing (normal/position maps) |
|
4. Prompt embedding setup |
|
5. Classifier-free guidance preparation |
|
6. Diffusion sampling loop |
|
|
|
Args: |
|
images: List of reference PIL images |
|
prompt: Text prompt (overridden by learned embeddings) |
|
cached_condition: Dictionary containing: |
|
- images_normal: Normal maps (PIL or tensor) |
|
- images_position: Position maps (PIL or tensor) |
|
|
|
Returns: |
|
List[PIL.Image]: Generated multiview PBR textures |
|
""" |
|
|
|
self.prepare() |
|
if images is None: |
|
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.") |
|
assert not isinstance(images, torch.Tensor) |
|
|
|
if not isinstance(images, List): |
|
images = [images] |
|
|
|
images = [to_rgb_image(image) for image in images] |
|
images_vae = [torch.tensor(np.array(image) / 255.0) for image in images] |
|
images_vae = [image_vae.unsqueeze(0).permute(0, 3, 1, 2).unsqueeze(0) for image_vae in images_vae] |
|
images_vae = torch.cat(images_vae, dim=1) |
|
images_vae = images_vae.to(device=self.vae.device, dtype=self.unet.dtype) |
|
|
|
batch_size = images_vae.shape[0] |
|
N_ref = images_vae.shape[1] |
|
|
|
assert batch_size == 1 |
|
assert num_images_per_prompt == 1 |
|
|
|
if self.unet.use_ra: |
|
ref_latents = self.encode_images(images_vae) |
|
cached_condition["ref_latents"] = ref_latents |
|
|
|
def convert_pil_list_to_tensor(images): |
|
bg_c = [1.0, 1.0, 1.0] |
|
images_tensor = [] |
|
for batch_imgs in images: |
|
view_imgs = [] |
|
for pil_img in batch_imgs: |
|
img = numpy.asarray(pil_img, dtype=numpy.float32) / 255.0 |
|
if img.shape[2] > 3: |
|
alpha = img[:, :, 3:] |
|
img = img[:, :, :3] * alpha + bg_c * (1 - alpha) |
|
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).contiguous().half().to("cuda") |
|
view_imgs.append(img) |
|
view_imgs = torch.cat(view_imgs, dim=0) |
|
images_tensor.append(view_imgs.unsqueeze(0)) |
|
|
|
images_tensor = torch.cat(images_tensor, dim=0) |
|
return images_tensor |
|
|
|
if "images_normal" in cached_condition: |
|
if isinstance(cached_condition["images_normal"], List): |
|
cached_condition["images_normal"] = convert_pil_list_to_tensor(cached_condition["images_normal"]) |
|
|
|
cached_condition["embeds_normal"] = self.encode_images(cached_condition["images_normal"]) |
|
|
|
if "images_position" in cached_condition: |
|
|
|
if isinstance(cached_condition["images_position"], List): |
|
cached_condition["images_position"] = convert_pil_list_to_tensor(cached_condition["images_position"]) |
|
|
|
cached_condition["position_maps"] = cached_condition["images_position"] |
|
cached_condition["embeds_position"] = self.encode_images(cached_condition["images_position"]) |
|
|
|
if self.unet.use_learned_text_clip: |
|
|
|
all_shading_tokens = [] |
|
for token in self.unet.pbr_setting: |
|
all_shading_tokens.append( |
|
getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(batch_size, 1, 1) |
|
) |
|
prompt_embeds = torch.stack(all_shading_tokens, dim=1) |
|
negative_prompt_embeds = torch.stack(all_shading_tokens, dim=1) |
|
|
|
|
|
else: |
|
if prompt is None: |
|
prompt = "high quality" |
|
if isinstance(prompt, str): |
|
prompt = [prompt for _ in range(batch_size)] |
|
device = self._execution_device |
|
prompt_embeds, _ = self.encode_prompt( |
|
prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=False |
|
) |
|
|
|
if isinstance(negative_prompt, str): |
|
negative_prompt = [negative_prompt for _ in range(batch_size)] |
|
if negative_prompt is not None: |
|
negative_prompt_embeds, _ = self.encode_prompt( |
|
negative_prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=False, |
|
) |
|
else: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
|
|
if guidance_scale > 1: |
|
if self.unet.use_ra: |
|
cached_condition["ref_latents"] = cached_condition["ref_latents"].repeat( |
|
3, *([1] * (cached_condition["ref_latents"].dim() - 1)) |
|
) |
|
cached_condition["ref_scale"] = torch.as_tensor([0.0, 1.0, 1.0]).to(cached_condition["ref_latents"]) |
|
|
|
if self.unet.use_dino: |
|
zero_states = torch.zeros_like(cached_condition["dino_hidden_states"]) |
|
cached_condition["dino_hidden_states"] = torch.cat( |
|
[zero_states, zero_states, cached_condition["dino_hidden_states"]] |
|
) |
|
|
|
del zero_states |
|
if "embeds_normal" in cached_condition: |
|
cached_condition["embeds_normal"] = cached_condition["embeds_normal"].repeat( |
|
3, *([1] * (cached_condition["embeds_normal"].dim() - 1)) |
|
) |
|
|
|
if "embeds_position" in cached_condition: |
|
cached_condition["embeds_position"] = cached_condition["embeds_position"].repeat( |
|
3, *([1] * (cached_condition["embeds_position"].dim() - 1)) |
|
) |
|
|
|
if "position_maps" in cached_condition: |
|
cached_condition["position_maps"] = cached_condition["position_maps"].repeat( |
|
3, *([1] * (cached_condition["position_maps"].dim() - 1)) |
|
) |
|
|
|
images = self.denoise( |
|
None, |
|
*args, |
|
cross_attention_kwargs=None, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
output_type=output_type, |
|
width=width, |
|
height=height, |
|
return_dict=return_dict, |
|
**cached_condition, |
|
) |
|
|
|
return images |
|
|
|
def denoise( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
sigmas: List[float] = None, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`] |
|
(https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when |
|
using zero terminal SNR. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): |
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of |
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: |
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a |
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
|
|
Core denoising procedure for multiview PBR texture generation. |
|
|
|
Handles the complete diffusion process including: |
|
- Input validation and preparation |
|
- Timestep scheduling |
|
- Latent noise initialization |
|
- Iterative denoising with specialized guidance |
|
- Output decoding and post-processing |
|
|
|
Key innovations: |
|
1. Triple-batch classifier-free guidance: |
|
- Negative (unconditional) |
|
- Reference-conditioned |
|
- Full-conditioned |
|
2. View-dependent guidance scaling: |
|
- Adjusts influence based on camera azimuth |
|
3. PBR-aware latent organization: |
|
- Maintains material/view separation throughout |
|
4. Optimized VRAM management: |
|
- Selective tensor reshaping |
|
|
|
Processing Stages: |
|
1. Setup & Validation: Configures pipeline components and validates inputs |
|
2. Prompt Encoding: Processes text/material conditioning |
|
3. Latent Initialization: Prepares noise for denoising process |
|
4. Iterative Denoising: |
|
a) Scales and organizes latent variables |
|
b) Predicts noise at current timestep |
|
c) Applies view-dependent guidance |
|
d) Computes previous latent state |
|
5. Output Decoding: Converts latents to final images |
|
6. Cleanup: Releases resources and formats output |
|
|
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
|
|
kwargs["cache"] = {} |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated," |
|
"consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated," |
|
"consider using `callback_on_step_end`", |
|
) |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
|
|
""" |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
)' |
|
""" |
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, sigmas |
|
) |
|
assert num_images_per_prompt == 1 |
|
|
|
n_pbr = len(self.unet.pbr_setting) |
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * kwargs["num_in_batch"] * n_pbr, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = ( |
|
{"image_embeds": image_embeds} |
|
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) |
|
else None |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
latents = rearrange( |
|
latents, "(b n_pbr n) c h w -> b n_pbr n c h w", n=kwargs["num_in_batch"], n_pbr=n_pbr |
|
) |
|
|
|
latent_model_input = latents.repeat(3, 1, 1, 1, 1, 1) if self.do_classifier_free_guidance else latents |
|
latent_model_input = rearrange(latent_model_input, "b n_pbr n c h w -> (b n_pbr n) c h w") |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
latent_model_input = rearrange( |
|
latent_model_input, "(b n_pbr n) c h w ->b n_pbr n c h w", n=kwargs["num_in_batch"], n_pbr=n_pbr |
|
) |
|
|
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
**kwargs, |
|
)[0] |
|
latents = rearrange(latents, "b n_pbr n c h w -> (b n_pbr n) c h w") |
|
|
|
if self.do_classifier_free_guidance: |
|
|
|
|
|
noise_pred_uncond, noise_pred_ref, noise_pred_full = noise_pred.chunk(3) |
|
|
|
if "camera_azims" in kwargs.keys(): |
|
camera_azims = kwargs["camera_azims"] |
|
else: |
|
camera_azims = [0] * kwargs["num_in_batch"] |
|
|
|
def cam_mapping(azim): |
|
if azim < 90 and azim >= 0: |
|
return float(azim) / 90.0 + 1 |
|
elif azim >= 90 and azim < 330: |
|
return 2.0 |
|
else: |
|
return -float(azim) / 90.0 + 5.0 |
|
|
|
view_scale_tensor = ( |
|
torch.from_numpy(np.asarray([cam_mapping(azim) for azim in camera_azims])) |
|
.unsqueeze(0) |
|
.repeat(n_pbr, 1) |
|
.view(-1) |
|
.to(noise_pred_uncond)[:, None, None, None] |
|
) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * view_scale_tensor * ( |
|
noise_pred_ref - noise_pred_uncond |
|
) |
|
noise_pred += self.guidance_scale * view_scale_tensor * (noise_pred_full - noise_pred_ref) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_ref, guidance_rescale=self.guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents[:, :num_channels_latents, :, :], **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|