Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# app.py (
|
2 |
import gradio as gr
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
@@ -12,18 +12,21 @@ import time
|
|
12 |
# --- 1. 配置 (保持不变) ---
|
13 |
VECTOR_STORE_PATH = "vector_store"
|
14 |
EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5"
|
|
|
15 |
GGUF_MODEL_REPO = "TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF"
|
|
|
16 |
GGUF_MODEL_FILE = "capybarahermes-2.5-mistral-7b.Q4_K_M.gguf"
|
17 |
|
18 |
# --- 2. 加载RAG管道 (保持不变) ---
|
19 |
def load_rag_chain():
|
20 |
-
# ... (这部分代码和之前完全一样,无需修改) ...
|
21 |
print("开始加载RAG管道...")
|
22 |
embeddings = HuggingFaceBgeEmbeddings(model_name=EMBEDDING_MODEL, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
23 |
if not os.path.exists(VECTOR_STORE_PATH): raise FileNotFoundError(f"错误:向量数据库 '{VECTOR_STORE_PATH}' 不存在!")
|
24 |
vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
25 |
model_path = hf_hub_download(repo_id=GGUF_MODEL_REPO, filename=GGUF_MODEL_FILE, local_dir="models")
|
26 |
llm = LlamaCpp(model_path=model_path, n_gpu_layers=0, n_batch=512, n_ctx=4096, f16_kv=True, verbose=False)
|
|
|
|
|
27 |
prompt_template = """<|im_start|>system
|
28 |
You are a helpful assistant named "粤小智". Answer the user's question in Chinese based on the provided "Context".
|
29 |
If the context is not sufficient, just say: "抱歉,关于您的问题,我的知识库暂时没有相关信息。". Do not make up answers.
|
@@ -41,10 +44,9 @@ Question:
|
|
41 |
print("✅ RAG管道加载完毕!")
|
42 |
return qa_chain
|
43 |
|
44 |
-
# --- 3. Gradio应用逻辑 (
|
45 |
RAG_CHAIN = load_rag_chain()
|
46 |
|
47 |
-
# history是Gradio自动管理的,格式为[ [user_msg1, bot_msg1], [user_msg2, bot_msg2], ... ]
|
48 |
def user(user_message, history):
|
49 |
# 将用户消息添加到聊天记录中,并返回一个空的输入框
|
50 |
return "", history + [[user_message, None]]
|
@@ -58,7 +60,7 @@ def bot(history):
|
|
58 |
result = RAG_CHAIN.invoke({"query": user_message})
|
59 |
bot_message = result.get('result', "处理出错").strip()
|
60 |
|
61 |
-
#
|
62 |
history[-1][1] = ""
|
63 |
for character in bot_message:
|
64 |
history[-1][1] += character
|
@@ -90,6 +92,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}")
|
|
90 |
bot, chatbot, chatbot
|
91 |
)
|
92 |
|
93 |
-
#
|
94 |
demo.queue()
|
95 |
demo.launch()
|
|
|
1 |
+
# app.py (最终确认版 - 使用 gr.Blocks)
|
2 |
import gradio as gr
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
|
|
12 |
# --- 1. 配置 (保持不变) ---
|
13 |
VECTOR_STORE_PATH = "vector_store"
|
14 |
EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5"
|
15 |
+
# 切换到 CapybaraHermes-2.5-Mistral-7B 模型
|
16 |
GGUF_MODEL_REPO = "TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF"
|
17 |
+
# 我们选择一个大小适中的4位量化版本
|
18 |
GGUF_MODEL_FILE = "capybarahermes-2.5-mistral-7b.Q4_K_M.gguf"
|
19 |
|
20 |
# --- 2. 加载RAG管道 (保持不变) ---
|
21 |
def load_rag_chain():
|
|
|
22 |
print("开始加载RAG管道...")
|
23 |
embeddings = HuggingFaceBgeEmbeddings(model_name=EMBEDDING_MODEL, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
24 |
if not os.path.exists(VECTOR_STORE_PATH): raise FileNotFoundError(f"错误:向量数据库 '{VECTOR_STORE_PATH}' 不存在!")
|
25 |
vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
26 |
model_path = hf_hub_download(repo_id=GGUF_MODEL_REPO, filename=GGUF_MODEL_FILE, local_dir="models")
|
27 |
llm = LlamaCpp(model_path=model_path, n_gpu_layers=0, n_batch=512, n_ctx=4096, f16_kv=True, verbose=False)
|
28 |
+
|
29 |
+
# 使用为Mistral模型优化的Prompt模板
|
30 |
prompt_template = """<|im_start|>system
|
31 |
You are a helpful assistant named "粤小智". Answer the user's question in Chinese based on the provided "Context".
|
32 |
If the context is not sufficient, just say: "抱歉,关于您的问题,我的知识库暂时没有相关信息。". Do not make up answers.
|
|
|
44 |
print("✅ RAG管道加载完毕!")
|
45 |
return qa_chain
|
46 |
|
47 |
+
# --- 3. Gradio应用逻辑 (适配gr.Blocks) ---
|
48 |
RAG_CHAIN = load_rag_chain()
|
49 |
|
|
|
50 |
def user(user_message, history):
|
51 |
# 将用户消息添加到聊天记录中,并返回一个空的输入框
|
52 |
return "", history + [[user_message, None]]
|
|
|
60 |
result = RAG_CHAIN.invoke({"query": user_message})
|
61 |
bot_message = result.get('result', "处理出错").strip()
|
62 |
|
63 |
+
# 模拟打字效果
|
64 |
history[-1][1] = ""
|
65 |
for character in bot_message:
|
66 |
history[-1][1] += character
|
|
|
92 |
bot, chatbot, chatbot
|
93 |
)
|
94 |
|
95 |
+
# 使用queue()来处理流式(打字效果)输出
|
96 |
demo.queue()
|
97 |
demo.launch()
|