# app.py (最终确认版 - 使用 gr.Blocks) import gradio as gr from langchain.prompts import PromptTemplate from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain_community.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain_community.llms import LlamaCpp from huggingface_hub import hf_hub_download import os import time # --- 1. 配置 (保持不变) --- VECTOR_STORE_PATH = "vector_store" EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5" # 切换到 CapybaraHermes-2.5-Mistral-7B 模型 GGUF_MODEL_REPO = "TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF" # 我们选择一个大小适中的4位量化版本 GGUF_MODEL_FILE = "capybarahermes-2.5-mistral-7b.Q4_K_M.gguf" # --- 2. 加载RAG管道 (保持不变) --- def load_rag_chain(): print("开始加载RAG管道...") embeddings = HuggingFaceBgeEmbeddings(model_name=EMBEDDING_MODEL, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) if not os.path.exists(VECTOR_STORE_PATH): raise FileNotFoundError(f"错误:向量数据库 '{VECTOR_STORE_PATH}' 不存在!") vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True) model_path = hf_hub_download(repo_id=GGUF_MODEL_REPO, filename=GGUF_MODEL_FILE, local_dir="models") llm = LlamaCpp(model_path=model_path, n_gpu_layers=0, n_batch=512, n_ctx=4096, f16_kv=True, verbose=False) # 使用为Mistral模型优化的Prompt模板 prompt_template = """<|im_start|>system You are a helpful assistant named "粤小智". Answer the user's question in Chinese based on the provided "Context". If the context is not sufficient, just say: "抱歉,关于您的问题,我的知识库暂时没有相关信息。". Do not make up answers. Your answer should be clear and step-by-step if it's an operation guide.<|im_end|> <|im_start|>user Context: {context} Question: {question}<|im_end|> <|im_start|>assistant """ PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) retriever = vector_store.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.3, 'k': 3} ) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, # 使用我们新创建的retriever chain_type_kwargs={"prompt": PROMPT} ) print("✅ RAG管道加载完毕!") return qa_chain # --- 3. Gradio应用逻辑 (适配gr.Blocks) --- RAG_CHAIN = load_rag_chain() def user(user_message, history): # 将用户消息添加到聊天记录中,并返回一个空的输入框 return "", history + [[user_message, None]] def bot(history): # 获取最后一条用户消息 user_message = history[-1][0] print(f"收到用户消息: '{user_message}'") # 调用RAG链获取回答 result = RAG_CHAIN.invoke({"query": user_message}) bot_message = result.get('result', "处理出错").strip() # 模拟打字效果 history[-1][1] = "" for character in bot_message: history[-1][1] += character time.sleep(0.02) # 每个字之间暂停0.02秒 yield history print(f"模型生成回答: '{history[-1][1]}'") # --- 4. 搭建并启动界面 (使用gr.Blocks手动搭建) --- with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo: gr.Markdown("# 粤政云服务智能向导 - 我是粤小智 🤖") chatbot = gr.Chatbot( [], elem_id="chatbot", label="聊天窗口", bubble_full_width=True, height=600 ) with gr.Row(): txt = gr.Textbox( scale=4, show_label=False, placeholder="在这里输入您的问题,然后按回车键...", container=False, ) # 定义回车或点击按钮后的事件流 txt.submit(user, [txt, chatbot], [txt, chatbot], queue=False).then( bot, chatbot, chatbot ) # 使用queue()来处理流式(打字效果)输出 demo.queue() demo.launch()