chunkr-api / app.py
KJ24's picture
Update app.py
ecd203a verified
raw
history blame
4.15 kB
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Optional
# ✅ Modules LlamaIndex – version >= 0.10.0+
from llama_index.core.settings import Settings
from llama_index.core import Document
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.core.node_parser import SemanticSplitterNodeParser
# ✅ Pour l'embedding LOCAL via transformers
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
import os
app = FastAPI()
# ✅ Configuration locale du cache HF pour Hugging Face
# ✅ Définir un chemin autorisé pour le cache (à l'intérieur du container Hugging Face)
CACHE_DIR = "/app/cache"
os.environ["HF_HOME"] = CACHE_DIR
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
os.environ["HF_HUB_CACHE"] = CACHE_DIR
# ✅ Configuration du modèle d’embedding local (ex: BGE / Nomic / GTE etc.)
MODEL_NAME = "BAAI/bge-small-en-v1.5"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
def get_embedding(text: str):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
embeddings = outputs.last_hidden_state[:, 0]
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
# ✅ Données entrantes du POST
class ChunkRequest(BaseModel):
text: str
source_id: Optional[str] = None
titre: Optional[str] = None
source: Optional[str] = None
type: Optional[str] = None
@app.post("/chunk")
async def chunk_text(data: ChunkRequest):
try:
# ✅ Vérification du texte reçu
print(f"✅ Texte reçu ({len(data.text)} caractères) : {data.text[:200]}...")
print("✅ ✔️ Reçu – On passe à la configuration du modèle LLM...")
# ✅ Chargement du modèle LLM depuis Hugging Face (GGUF distant)
llm = LlamaCPP(
model_url="https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_M.gguf",
temperature=0.1,
max_new_tokens=512,
context_window=2048,
generate_kwargs={"top_p": 0.95},
model_kwargs={"n_gpu_layers": 1},
)
print("✅✅ Le modèle CodeLlama-7B-Instruct Q4_K_M a été chargé sans erreur...")
print("✅ ✔️ Modèle LLM chargé sans erreur on continue...")
# ✅ Définition d’un wrapper simple pour l’embedding local
class SimpleEmbedding:
def get_text_embedding(self, text: str):
return get_embedding(text)
# ✅ Nouvelle configuration (⚠️ ne plus utiliser ServiceContext)
Settings.llm = llm
Settings.embed_model = SimpleEmbedding()
print("✅ LLM et embedding configurés - prêt pour le split")
print("✅ Début du split sémantique...", flush=True)
# ✅ Utilisation du Semantic Splitter avec le LLM actuel
parser = SemanticSplitterNodeParser.from_defaults(llm=llm)
doc = Document(text=data.text)
try:
nodes = parser.get_nodes_from_documents([doc])
print(f"✅ Nombre de chunks générés : {len(nodes)}")
print(f"🧩 Exemple chunk : {nodes[0].text[:100]}...")
except Exception as e:
import traceback
traceback.print_exc()
print(f"❌ Erreur lors du split sémantique : {e}")
return {"error": str(e)}
# ✅ Résultat complet pour l’API
return {
"chunks": [node.text for node in nodes],
"metadatas": [node.metadata for node in nodes],
"source_id": data.source_id,
"titre": data.titre,
"source": data.source,
"type": data.type,
"error": None # ← essentiel pour que n8n voie "rien à signaler"
}
except Exception as e:
return {"error": str(e)}
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)