Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,34 @@
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from typing import Optional
|
4 |
|
5 |
-
#
|
6 |
-
from llama_index.core.settings import Settings
|
7 |
from llama_index.core import Document
|
|
|
|
|
8 |
from llama_index.llms.llama_cpp import LlamaCPP
|
9 |
-
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
10 |
-
|
11 |
from llama_index.core.base.llms.base import BaseLLM
|
12 |
|
13 |
-
#
|
14 |
from transformers import AutoTokenizer, AutoModel
|
15 |
import torch
|
16 |
import torch.nn.functional as F
|
|
|
17 |
import os
|
18 |
|
19 |
app = FastAPI()
|
20 |
|
21 |
-
# ✅ Configuration
|
22 |
-
# ✅ Définir un chemin autorisé pour le cache (à l'intérieur du container Hugging Face)
|
23 |
CACHE_DIR = "/app/cache"
|
24 |
os.environ["HF_HOME"] = CACHE_DIR
|
25 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
26 |
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
|
27 |
os.environ["HF_HUB_CACHE"] = CACHE_DIR
|
28 |
|
29 |
-
# ✅
|
30 |
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
31 |
-
|
32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
33 |
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
34 |
|
@@ -36,12 +36,14 @@ def get_embedding(text: str):
|
|
36 |
with torch.no_grad():
|
37 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
38 |
outputs = model(**inputs)
|
39 |
-
embeddings = outputs.last_hidden_state[:, 0]
|
40 |
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
|
41 |
|
42 |
-
# ✅
|
43 |
class ChunkRequest(BaseModel):
|
44 |
text: str
|
|
|
|
|
45 |
source_id: Optional[str] = None
|
46 |
titre: Optional[str] = None
|
47 |
source: Optional[str] = None
|
@@ -50,11 +52,9 @@ class ChunkRequest(BaseModel):
|
|
50 |
@app.post("/chunk")
|
51 |
async def chunk_text(data: ChunkRequest):
|
52 |
try:
|
53 |
-
|
54 |
-
print(f"✅ Texte reçu ({len(data.text)} caractères) : {data.text[:200]}...")
|
55 |
-
print("✅ ✔️ Reçu – On passe à la configuration du modèle LLM...")
|
56 |
|
57 |
-
# ✅ Chargement du modèle
|
58 |
llm = LlamaCPP(
|
59 |
model_url="https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_M.gguf",
|
60 |
temperature=0.1,
|
@@ -64,44 +64,36 @@ async def chunk_text(data: ChunkRequest):
|
|
64 |
model_kwargs={"n_gpu_layers": 1},
|
65 |
)
|
66 |
|
|
|
67 |
|
68 |
-
|
69 |
-
print("✅✅ Le modèle CodeLlama-7B-Instruct Q4_K_M a été chargé sans erreur...")
|
70 |
-
|
71 |
-
|
72 |
-
print("✅ ✔️ Modèle LLM chargé sans erreur on continue...")
|
73 |
-
|
74 |
-
# ✅ Définition d’un wrapper simple pour l’embedding local
|
75 |
class SimpleEmbedding:
|
76 |
def get_text_embedding(self, text: str):
|
77 |
return get_embedding(text)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
# ✅ Nouvelle configuration (⚠️ ne plus utiliser ServiceContext)
|
82 |
Settings.llm = llm
|
83 |
Settings.embed_model = SimpleEmbedding()
|
84 |
|
85 |
-
print("✅ LLM et embedding
|
86 |
-
print("✅ Début du split sémantique...", flush=True)
|
87 |
|
88 |
-
# ✅ Utilisation du Semantic Splitter avec le LLM actuel
|
89 |
parser = SemanticSplitterNodeParser.from_defaults(llm=llm)
|
90 |
-
|
91 |
doc = Document(text=data.text)
|
92 |
|
93 |
try:
|
94 |
nodes = parser.get_nodes_from_documents([doc])
|
95 |
-
print(f"✅
|
96 |
-
|
|
|
97 |
|
98 |
except Exception as e:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
# ✅
|
105 |
return {
|
106 |
"chunks": [node.text for node in nodes],
|
107 |
"metadatas": [node.metadata for node in nodes],
|
@@ -109,10 +101,11 @@ async def chunk_text(data: ChunkRequest):
|
|
109 |
"titre": data.titre,
|
110 |
"source": data.source,
|
111 |
"type": data.type,
|
112 |
-
"error": None #
|
113 |
}
|
114 |
|
115 |
except Exception as e:
|
|
|
116 |
return {"error": str(e)}
|
117 |
|
118 |
if __name__ == "__main__":
|
|
|
1 |
+
# ✅ API FastAPI de chunking sémantique intelligent avec fallback automatique
|
2 |
+
|
3 |
from fastapi import FastAPI
|
4 |
from pydantic import BaseModel
|
5 |
from typing import Optional
|
6 |
|
7 |
+
# LlamaIndex (>= 0.10.0)
|
|
|
8 |
from llama_index.core import Document
|
9 |
+
from llama_index.core.settings import Settings
|
10 |
+
from llama_index.core.node_parser import SemanticSplitterNodeParser, RecursiveTextSplitter
|
11 |
from llama_index.llms.llama_cpp import LlamaCPP
|
|
|
|
|
12 |
from llama_index.core.base.llms.base import BaseLLM
|
13 |
|
14 |
+
# Embedding local (transformers + torch)
|
15 |
from transformers import AutoTokenizer, AutoModel
|
16 |
import torch
|
17 |
import torch.nn.functional as F
|
18 |
+
|
19 |
import os
|
20 |
|
21 |
app = FastAPI()
|
22 |
|
23 |
+
# ✅ Configuration des caches pour Hugging Face dans le container
|
|
|
24 |
CACHE_DIR = "/app/cache"
|
25 |
os.environ["HF_HOME"] = CACHE_DIR
|
26 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
27 |
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
|
28 |
os.environ["HF_HUB_CACHE"] = CACHE_DIR
|
29 |
|
30 |
+
# ✅ Modèle d'embedding local (dense vector)
|
31 |
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
|
|
32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
33 |
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
34 |
|
|
|
36 |
with torch.no_grad():
|
37 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
38 |
outputs = model(**inputs)
|
39 |
+
embeddings = outputs.last_hidden_state[:, 0] # CLS token
|
40 |
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
|
41 |
|
42 |
+
# ✅ Format des données entrantes de l'API
|
43 |
class ChunkRequest(BaseModel):
|
44 |
text: str
|
45 |
+
max_tokens: Optional[int] = 1000
|
46 |
+
overlap: Optional[int] = 350
|
47 |
source_id: Optional[str] = None
|
48 |
titre: Optional[str] = None
|
49 |
source: Optional[str] = None
|
|
|
52 |
@app.post("/chunk")
|
53 |
async def chunk_text(data: ChunkRequest):
|
54 |
try:
|
55 |
+
print(f"\n✅ Texte reçu ({len(data.text)} caractères) : {data.text[:200]}...", flush=True)
|
|
|
|
|
56 |
|
57 |
+
# ✅ Chargement du modèle GGUF distant via llama-cpp
|
58 |
llm = LlamaCPP(
|
59 |
model_url="https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_M.gguf",
|
60 |
temperature=0.1,
|
|
|
64 |
model_kwargs={"n_gpu_layers": 1},
|
65 |
)
|
66 |
|
67 |
+
print("✅ Modèle LLM chargé avec succès !")
|
68 |
|
69 |
+
# ✅ Wrapper pour l'embedding local compatible avec LlamaIndex
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
class SimpleEmbedding:
|
71 |
def get_text_embedding(self, text: str):
|
72 |
return get_embedding(text)
|
73 |
|
74 |
+
# ✅ Configuration du moteur LLM et de l'embedding dans LlamaIndex
|
75 |
+
assert isinstance(llm, BaseLLM), "❌ L'objet LLM n'est pas compatible avec Settings.llm"
|
|
|
76 |
Settings.llm = llm
|
77 |
Settings.embed_model = SimpleEmbedding()
|
78 |
|
79 |
+
print("✅ Configuration du LLM et de l'embedding terminée. On initialise le Semantic Splitter...", flush=True)
|
|
|
80 |
|
|
|
81 |
parser = SemanticSplitterNodeParser.from_defaults(llm=llm)
|
|
|
82 |
doc = Document(text=data.text)
|
83 |
|
84 |
try:
|
85 |
nodes = parser.get_nodes_from_documents([doc])
|
86 |
+
print(f"✅ Semantic Splitter : {len(nodes)} chunks générés")
|
87 |
+
if not nodes:
|
88 |
+
raise ValueError("Aucun chunk produit par le Semantic Splitter")
|
89 |
|
90 |
except Exception as e:
|
91 |
+
print(f"⚠️ Fallback vers RecursiveTextSplitter suite à : {e}")
|
92 |
+
splitter = RecursiveTextSplitter(chunk_size=data.max_tokens, chunk_overlap=data.overlap)
|
93 |
+
nodes = splitter.get_nodes_from_documents([doc])
|
94 |
+
print(f"♻️ Recursive Splitter : {len(nodes)} chunks générés")
|
95 |
|
96 |
+
# ✅ Construction de la réponse JSON pour n8n ou autre client HTTP
|
97 |
return {
|
98 |
"chunks": [node.text for node in nodes],
|
99 |
"metadatas": [node.metadata for node in nodes],
|
|
|
101 |
"titre": data.titre,
|
102 |
"source": data.source,
|
103 |
"type": data.type,
|
104 |
+
"error": None # n8n utilise cette clé pour détecter les erreurs
|
105 |
}
|
106 |
|
107 |
except Exception as e:
|
108 |
+
print(f"❌ Erreur critique : {e}")
|
109 |
return {"error": str(e)}
|
110 |
|
111 |
if __name__ == "__main__":
|