KJ24 commited on
Commit
200fee8
·
verified ·
1 Parent(s): cbb6dd7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -9
app.py CHANGED
@@ -3,9 +3,10 @@ from pydantic import BaseModel
3
  from typing import Optional
4
 
5
  from llama_index.core import Document, ServiceContext
6
- from llama_index.llms.openai import OpenAI
7
- from llama_index.core.node_parser import SemanticSplitterNodeParser
8
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
 
 
9
  import os
10
 
11
  app = FastAPI()
@@ -19,19 +20,20 @@ class ChunkRequest(BaseModel):
19
  type: Optional[str] = None
20
 
21
  # 🔹 Endpoint principal
 
22
  @app.post("/chunk")
23
  async def chunk_text(data: ChunkRequest):
24
- # Modèle LLM (OpenRouter - Llama 4 Maverick)
25
- llm = OpenAI(
26
- model="meta-llama/llama-4-maverick:free",
27
- api_base="https://openrouter.ai/api/v1",
28
- api_key=os.getenv("OPENROUTER_API_KEY")
 
 
29
  )
30
 
31
- # 🔹 Embedding open source gratuit
32
  embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
33
 
34
- # 🔹 Service Context avec LLM + embeddings
35
  service_context = ServiceContext.from_defaults(
36
  llm=llm,
37
  embed_model=embed_model
@@ -51,3 +53,8 @@ async def chunk_text(data: ChunkRequest):
51
  }
52
  except Exception as e:
53
  return {"error": str(e)}
 
 
 
 
 
 
3
  from typing import Optional
4
 
5
  from llama_index.core import Document, ServiceContext
6
+ from llama_index.llms.llama_cpp import LlamaCPP
 
7
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
8
+ from llama_index.core.node_parser import SemanticSplitterNodeParser
9
+
10
  import os
11
 
12
  app = FastAPI()
 
20
  type: Optional[str] = None
21
 
22
  # 🔹 Endpoint principal
23
+
24
  @app.post("/chunk")
25
  async def chunk_text(data: ChunkRequest):
26
+ llm = LlamaCPP(
27
+ model_path="/models/mistral-7b-instruct.gguf",
28
+ temperature=0.1,
29
+ max_new_tokens=512,
30
+ context_window=2048,
31
+ generate_kwargs={"top_p": 0.95},
32
+ model_kwargs={"n_gpu_layers": 1},
33
  )
34
 
 
35
  embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
36
 
 
37
  service_context = ServiceContext.from_defaults(
38
  llm=llm,
39
  embed_model=embed_model
 
53
  }
54
  except Exception as e:
55
  return {"error": str(e)}
56
+
57
+
58
+
59
+
60
+