Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,9 @@ from llama_index.llms.llama_cpp import LlamaCPP
|
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
9 |
|
10 |
-
import os
|
11 |
-
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
#
|
15 |
class ChunkRequest(BaseModel):
|
16 |
text: str
|
17 |
source_id: Optional[str] = None
|
@@ -19,27 +17,29 @@ class ChunkRequest(BaseModel):
|
|
19 |
source: Optional[str] = None
|
20 |
type: Optional[str] = None
|
21 |
|
22 |
-
# 🔹 Endpoint principal
|
23 |
-
|
24 |
@app.post("/chunk")
|
25 |
async def chunk_text(data: ChunkRequest):
|
|
|
26 |
llm = LlamaCPP(
|
27 |
-
|
28 |
temperature=0.1,
|
29 |
max_new_tokens=512,
|
30 |
context_window=2048,
|
31 |
generate_kwargs={"top_p": 0.95},
|
32 |
-
model_kwargs={"n_gpu_layers": 1},
|
33 |
)
|
34 |
|
|
|
35 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
36 |
|
|
|
37 |
service_context = ServiceContext.from_defaults(
|
38 |
llm=llm,
|
39 |
embed_model=embed_model
|
40 |
)
|
41 |
|
42 |
try:
|
|
|
43 |
parser = SemanticSplitterNodeParser.from_defaults(service_context=service_context)
|
44 |
nodes = parser.get_nodes_from_documents([Document(text=data.text)])
|
45 |
|
@@ -53,8 +53,3 @@ async def chunk_text(data: ChunkRequest):
|
|
53 |
}
|
54 |
except Exception as e:
|
55 |
return {"error": str(e)}
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
9 |
|
|
|
|
|
10 |
app = FastAPI()
|
11 |
|
12 |
+
# 📥 Modèle de la requête JSON envoyée à /chunk
|
13 |
class ChunkRequest(BaseModel):
|
14 |
text: str
|
15 |
source_id: Optional[str] = None
|
|
|
17 |
source: Optional[str] = None
|
18 |
type: Optional[str] = None
|
19 |
|
|
|
|
|
20 |
@app.post("/chunk")
|
21 |
async def chunk_text(data: ChunkRequest):
|
22 |
+
# ✅ Chargement direct d’un modèle hébergé sur Hugging Face (pas de fichier local .gguf)
|
23 |
llm = LlamaCPP(
|
24 |
+
model_url="https://huggingface.co/leafspark/Mistral-7B-Instruct-v0.2-Q4_K_M-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_K_M.gguf",
|
25 |
temperature=0.1,
|
26 |
max_new_tokens=512,
|
27 |
context_window=2048,
|
28 |
generate_kwargs={"top_p": 0.95},
|
29 |
+
model_kwargs={"n_gpu_layers": 1}, # Laisse 1 si CPU
|
30 |
)
|
31 |
|
32 |
+
# ✅ Embedding open-source via Hugging Face
|
33 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
34 |
|
35 |
+
# ✅ Configuration du service IA
|
36 |
service_context = ServiceContext.from_defaults(
|
37 |
llm=llm,
|
38 |
embed_model=embed_model
|
39 |
)
|
40 |
|
41 |
try:
|
42 |
+
# ✅ Découpage sémantique intelligent
|
43 |
parser = SemanticSplitterNodeParser.from_defaults(service_context=service_context)
|
44 |
nodes = parser.get_nodes_from_documents([Document(text=data.text)])
|
45 |
|
|
|
53 |
}
|
54 |
except Exception as e:
|
55 |
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|