Spaces:
Running
Running
File size: 10,143 Bytes
f65d205 344cdbf f65d205 995479c f65d205 995479c f65d205 995479c f65d205 995479c 5d76c04 995479c f65d205 995479c f65d205 995479c f65d205 995479c f65d205 995479c f65d205 995479c f65d205 995479c f65d205 995479c 344cdbf 995479c 5d76c04 995479c 5b51eba f65d205 995479c f65d205 995479c f65d205 995479c f65d205 995479c f65d205 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import sys
import math
import requests
import gradio as gr
import pandas as pd
from datasets import Dataset
from tqdm import tqdm
from ragas import evaluate, SingleTurnSample
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from ragas.metrics import (
ResponseRelevancy, LLMContextPrecisionWithReference, LLMContextRecall,
ContextEntityRecall, Faithfulness, NoiseSensitivity, SemanticSimilarity, FactualCorrectness
)
# 設定輸出編碼為 UTF-8(解決中文顯示問題)
sys.stdout.reconfigure(encoding="utf-8")
# 支援從Google Drive下載 Ground Truth
gt_url = os.environ.get("GT_URL")
gt_path = "tender_groundtruth.csv"
if gt_url and not os.path.exists(gt_path):
print("嘗試下載 Ground Truth...")
r = requests.get(gt_url)
print("HTTP 狀態碼:", r.status_code)
if r.status_code != 200:
print("下載失敗內容預覽:", r.text[:500])
else:
with open(gt_path, "wb") as f:
f.write(r.content)
# 綁定實驗室Google帳號(Python TA)Google Sheet,以記錄評估logs
def log_to_google_sheet(question, answer, contexts, scores):
url = os.environ.get("G_SHEET_URL")
if not url:
print("G_SHEET_URL 未設定,略過記錄")
return
try:
payload = {
"question": question,
"answer": answer,
"contexts": contexts,
"faithfulness": scores.get("Faithfulness"),
"answer_relevancy": scores.get("Answer Relevancy"),
"semantic_similarity": scores.get("Semantic Similarity"),
"context_precision": scores.get("Context Precision"),
"context_recall": scores.get("Context Recall"),
"context_entity_recall": scores.get("Context Entity Recall")
}
response = requests.post(url, json=payload)
print("成功寫入 Google Sheet:", response.status_code)
except Exception as e:
print("寫入 Google Sheet 失敗:", str(e))
def RAG_evaluation(uploaded_file, user_api_key):
try:
os.environ["OPENAI_API_KEY"] = user_api_key
print("評估開始")
if not os.path.exists(gt_path):
print("找不到 Ground Truth!")
return pd.DataFrame(), None
gt_df = pd.read_csv(gt_path)
df = pd.read_csv(uploaded_file.name, converters={"Context": eval})
print(f"上傳檔案筆數:{len(df)},GT 檔案筆數:{len(gt_df)}")
merged_df = pd.merge(df, gt_df[["Question", "Answer"]], on="Question", suffixes=("", "_GroundTruth"))
merged_df = merged_df.rename(columns={"Answer_GroundTruth": "GroundTruth"})
print(f"成功合併筆數:{len(merged_df)} / {len(df)}")
if len(merged_df) < len(df):
missing = df[~df["Question"].isin(merged_df["Question"])]
print("未合併題目:", missing["Question"].tolist())
if merged_df.empty:
return pd.DataFrame([{"錯誤訊息": "合併後無資料,請確認題目與 GT 是否對應"}]), None
llm_wrapper = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o-mini-2024-07-18"))
embedding_wrapper = LangchainEmbeddingsWrapper(OpenAIEmbeddings(model="text-embedding-3-large"))
batch_size = 10
records = []
for batch_start in tqdm(range(0, len(merged_df), batch_size), desc="RAGAS Batch Evaluating"):
batch_df = merged_df.iloc[batch_start:batch_start + batch_size]
samples = []
for _, row in batch_df.iterrows():
if not isinstance(row["Context"], list):
print(f"Context 非 list,跳過。值:{row['Question']}")
continue
sample = SingleTurnSample(
user_input=row["Question"],
response=row["Answer"],
retrieved_contexts=row["Context"],
reference=row["GroundTruth"],
)
samples.append(sample)
try:
dataset = Dataset.from_list([s.to_dict() for s in samples])
result = evaluate(
dataset=dataset,
metrics=[
LLMContextPrecisionWithReference(), LLMContextRecall(), ContextEntityRecall(),
NoiseSensitivity(), Faithfulness(), ResponseRelevancy(),
SemanticSimilarity(), FactualCorrectness()
],
llm=llm_wrapper,
embeddings=embedding_wrapper,
show_progress=False
)
result_df = result.to_pandas()
for i, row in enumerate(result_df.itertuples()):
input_row = batch_df.iloc[i]
record = {
"Question": input_row["Question"],
"Faithfulness": getattr(row, "faithfulness", None),
"Answer Relevancy": getattr(row, "answer_relevancy", None),
"Semantic Similarity": getattr(row, "semantic_similarity", None),
# "Factual Correctness": getattr(row, "factual_correctness", None),
"Context Precision": getattr(row, "llm_context_precision_with_reference", None),
"Context Recall": getattr(row, "context_recall", None),
"Context Entity Recall": getattr(row, "context_entity_recall", None),
# "Noise Sensitivity": getattr(row, "noise_sensitivity_relevant", None)
}
for key in list(record.keys()):
val = record[key]
if isinstance(val, float) and not math.isfinite(val):
record[key] = ""
records.append(record)
log_to_google_sheet(
question=input_row["Question"],
answer=input_row["Answer"],
contexts=input_row["Context"],
scores=record
)
except Exception as e:
print(f"批次評估失敗(第 {batch_start+1} 筆起):{e}")
continue
score_df = pd.DataFrame(records).fillna("")
print("完成評估筆數:", len(score_df))
numeric_cols = score_df.drop(columns=["Question"]).select_dtypes(include="number")
if not numeric_cols.empty:
avg_row = numeric_cols.mean().to_dict()
avg_row["Question"] = "Average"
score_df = pd.concat([score_df, pd.DataFrame([avg_row])], ignore_index=True)
output_path = "result_output.csv"
score_df.to_csv(output_path, index=False, encoding="utf-8-sig")
print("評估結果已儲存為 CSV:", output_path)
return score_df, output_path
except Exception as e:
print("評估函式整體錯誤:", str(e))
return pd.DataFrame([{"錯誤訊息": f"系統錯誤:{str(e)}"}]), None
# handle exception並執行RAG評估
def check_csv_and_run(file, key):
if file is None:
return pd.DataFrame([{"錯誤訊息": "請上傳檔案!"}]), None
if not key or key.strip() == "":
return pd.DataFrame([{"錯誤訊息": "請輸入 OpenAI API Key"}]), None
try:
df = pd.read_csv(file.name, encoding="utf-8-sig")
df.columns = [col.strip() for col in df.columns]
required_columns = {"Question", "Context", "Answer"}
actual_columns = set(df.columns)
if actual_columns != required_columns:
return pd.DataFrame([{"錯誤訊息": f"欄位錯誤:應包含欄位 {required_columns},實際為 {actual_columns}"}]), None
if df.shape[0] == 0:
return pd.DataFrame([{"錯誤訊息": "檔案中沒有資料列!"}]), None
invalid_rows = df[df["Question"].notnull() & (df["Answer"].isnull() | df["Context"].isnull())]
if len(invalid_rows) > 0:
missing_questions = "\n".join(f"- {q}" for q in invalid_rows["Question"].tolist())
return pd.DataFrame([{"錯誤訊息": f"發現 {len(invalid_rows)} 筆資料中 Answer 或 Context 為空:\n{missing_questions}"}]), None
try:
for i, val in df["Context"].dropna().items():
if not isinstance(eval(val), list):
return pd.DataFrame([{"錯誤訊息": f"第 {i + 1} 筆 Context 欄格式錯誤,請確認其內容應為 list"}]), None
except Exception as e:
return pd.DataFrame([{"錯誤訊息": f"Context 欄格式解析錯誤,請確認其為有效的 list 格式,例如 ['A', 'B']:{str(e)}"}]), None
except Exception as e:
return pd.DataFrame([{"錯誤訊息": f"發生錯誤:{str(e)}"}]), None
# 若上傳之待評估檔案無錯誤,執行評估
try:
return RAG_evaluation(file, key)
except Exception as e:
return pd.DataFrame([{"錯誤訊息": f"RAG 評估失敗:{str(e)}"}]), None
# Gradio 介面
with gr.Blocks() as demo:
gr.Markdown("## 📐 RAG系統評估工具")
gr.Markdown("""
### 📄 使用說明
請上傳您RAG系統產出的結果檔案(包含 Question, Context, Answer 欄位),並填入您的OpenAI API Key,以評估您的RAG系統。
#### ⏳ 完整評估需要數小時,無即時回應並不是當機,請耐心等候。
""")
file_input = gr.File(label="上傳 Evaluation_Dataset.csv")
api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
submit_btn = gr.Button("開始評估")
result_output = gr.Dataframe(label="評估結果")
download_link = gr.File(label="下載評估結果(CSV)")
def wrapped_fn(file, key):
return RAG_evaluation(file, key)
submit_btn.click(
fn=check_csv_and_run,
inputs=[file_input, api_key_input],
outputs=[result_output, download_link]
)
demo.launch() |