Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
import math
|
|
|
4 |
import requests
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
|
|
7 |
from datasets import Dataset
|
8 |
from tqdm import tqdm
|
9 |
from ragas import evaluate, SingleTurnSample
|
@@ -18,7 +20,7 @@ from ragas.metrics import (
|
|
18 |
# 設定輸出編碼為 UTF-8(解決中文顯示問題)
|
19 |
sys.stdout.reconfigure(encoding="utf-8")
|
20 |
|
21 |
-
#
|
22 |
gt_url = os.environ.get("GT_URL")
|
23 |
gt_path = "tender_groundtruth.csv"
|
24 |
|
@@ -55,8 +57,58 @@ def log_to_google_sheet(question, answer, contexts, scores):
|
|
55 |
except Exception as e:
|
56 |
print("寫入 Google Sheet 失敗:", str(e))
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def RAG_evaluation(uploaded_file, user_api_key):
|
59 |
try:
|
|
|
|
|
|
|
|
|
|
|
60 |
os.environ["OPENAI_API_KEY"] = user_api_key
|
61 |
print("評估開始")
|
62 |
|
@@ -76,10 +128,10 @@ def RAG_evaluation(uploaded_file, user_api_key):
|
|
76 |
print("未合併題目:", missing["Question"].tolist())
|
77 |
if merged_df.empty:
|
78 |
return pd.DataFrame([{"錯誤訊息": "合併後無資料,請確認題目與 GT 是否對應"}]), None
|
79 |
-
|
80 |
llm_wrapper = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o-mini-2024-07-18"))
|
81 |
embedding_wrapper = LangchainEmbeddingsWrapper(OpenAIEmbeddings(model="text-embedding-3-large"))
|
82 |
-
|
83 |
batch_size = 10
|
84 |
records = []
|
85 |
for batch_start in tqdm(range(0, len(merged_df), batch_size), desc="RAGAS Batch Evaluating"):
|
@@ -104,13 +156,18 @@ def RAG_evaluation(uploaded_file, user_api_key):
|
|
104 |
result = evaluate(
|
105 |
dataset=dataset,
|
106 |
metrics=[
|
107 |
-
LLMContextPrecisionWithReference(),
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
],
|
111 |
llm=llm_wrapper,
|
112 |
embeddings=embedding_wrapper,
|
113 |
-
show_progress=
|
114 |
)
|
115 |
|
116 |
result_df = result.to_pandas()
|
@@ -128,7 +185,7 @@ def RAG_evaluation(uploaded_file, user_api_key):
|
|
128 |
"Context Entity Recall": getattr(row, "context_entity_recall", None),
|
129 |
# "Noise Sensitivity": getattr(row, "noise_sensitivity_relevant", None)
|
130 |
}
|
131 |
-
|
132 |
for key in list(record.keys()):
|
133 |
val = record[key]
|
134 |
if isinstance(val, float) and not math.isfinite(val):
|
@@ -156,9 +213,11 @@ def RAG_evaluation(uploaded_file, user_api_key):
|
|
156 |
avg_row["Question"] = "Average"
|
157 |
score_df = pd.concat([score_df, pd.DataFrame([avg_row])], ignore_index=True)
|
158 |
|
159 |
-
|
|
|
|
|
160 |
score_df.to_csv(output_path, index=False, encoding="utf-8-sig")
|
161 |
-
print("
|
162 |
|
163 |
return score_df, output_path
|
164 |
|
@@ -192,30 +251,45 @@ def check_csv_and_run(file, key):
|
|
192 |
missing_questions = "\n".join(f"- {q}" for q in invalid_rows["Question"].tolist())
|
193 |
return pd.DataFrame([{"錯誤訊息": f"發現 {len(invalid_rows)} 筆資料中 Answer 或 Context 為空:\n{missing_questions}"}]), None
|
194 |
|
|
|
195 |
try:
|
196 |
for i, val in df["Context"].dropna().items():
|
197 |
if not isinstance(eval(val), list):
|
198 |
return pd.DataFrame([{"錯誤訊息": f"第 {i + 1} 筆 Context 欄格式錯誤,請確認其內容應為 list"}]), None
|
199 |
except Exception as e:
|
200 |
return pd.DataFrame([{"錯誤訊息": f"Context 欄格式解析錯誤,請確認其為有效的 list 格式,例如 ['A', 'B']:{str(e)}"}]), None
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
208 |
except Exception as e:
|
209 |
-
return pd.DataFrame([{"錯誤訊息": f"
|
210 |
|
211 |
# Gradio 介面
|
212 |
with gr.Blocks() as demo:
|
213 |
-
gr.Markdown("## 📐 RAG系統評估工具")
|
214 |
gr.Markdown("""
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
file_input = gr.File(label="上傳 Evaluation_Dataset.csv")
|
221 |
api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
|
@@ -224,13 +298,25 @@ with gr.Blocks() as demo:
|
|
224 |
result_output = gr.Dataframe(label="評估結果")
|
225 |
download_link = gr.File(label="下載評估結果(CSV)")
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
def wrapped_fn(file, key):
|
228 |
return RAG_evaluation(file, key)
|
229 |
|
230 |
submit_btn.click(
|
231 |
fn=check_csv_and_run,
|
232 |
inputs=[file_input, api_key_input],
|
233 |
-
outputs=[result_output, download_link]
|
234 |
)
|
235 |
|
236 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import math
|
4 |
+
from openai import OpenAI
|
5 |
import requests
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
+
import concurrent.futures
|
9 |
from datasets import Dataset
|
10 |
from tqdm import tqdm
|
11 |
from ragas import evaluate, SingleTurnSample
|
|
|
20 |
# 設定輸出編碼為 UTF-8(解決中文顯示問題)
|
21 |
sys.stdout.reconfigure(encoding="utf-8")
|
22 |
|
23 |
+
# 從Google Drive下載 Ground Truth
|
24 |
gt_url = os.environ.get("GT_URL")
|
25 |
gt_path = "tender_groundtruth.csv"
|
26 |
|
|
|
57 |
except Exception as e:
|
58 |
print("寫入 Google Sheet 失敗:", str(e))
|
59 |
|
60 |
+
def fetch_sheet_content():
|
61 |
+
DEFAULT_ANNOUNCEMENT = "尚無公告"
|
62 |
+
DEFAULT_FAQ = "尚無常見問題"
|
63 |
+
|
64 |
+
try:
|
65 |
+
url = os.environ.get("ANNOUNCEMENT_URL")
|
66 |
+
if not url:
|
67 |
+
print("Warning: 未設定 ANNOUNCEMENT_URL")
|
68 |
+
return DEFAULT_ANNOUNCEMENT, DEFAULT_FAQ
|
69 |
+
|
70 |
+
df = pd.read_csv(url)
|
71 |
+
|
72 |
+
announcement = df["Announcement"].iloc[0].strip() if "Announcement" in df.columns else DEFAULT_ANNOUNCEMENT
|
73 |
+
faq = df["FAQ"].iloc[0].strip() if "FAQ" in df.columns else DEFAULT_FAQ
|
74 |
+
|
75 |
+
announcement = announcement.replace("\\n", "<br>").replace("\n", "<br>")
|
76 |
+
faq = faq.replace("\\n", "<br>").replace("\n", "<br>")
|
77 |
+
|
78 |
+
return announcement or DEFAULT_ANNOUNCEMENT, faq or DEFAULT_FAQ
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
print("載入 Sheet 錯誤:", e)
|
82 |
+
return DEFAULT_ANNOUNCEMENT, DEFAULT_FAQ
|
83 |
+
|
84 |
+
|
85 |
+
def validate_openai_key(api_key):
|
86 |
+
try:
|
87 |
+
client = OpenAI(api_key=api_key)
|
88 |
+
client.chat.completions.create(
|
89 |
+
model="gpt-3.5-turbo",
|
90 |
+
messages=[{"role": "user", "content": "hi"}],
|
91 |
+
max_tokens=1
|
92 |
+
)
|
93 |
+
return None
|
94 |
+
except Exception as e:
|
95 |
+
err_msg = str(e)
|
96 |
+
if "Incorrect API key provided" in err_msg:
|
97 |
+
return pd.DataFrame([{"錯誤訊息": " 您輸入的 OpenAI API Key 有誤,請確認是否貼錯、字數不符或格式異常。"}]), None
|
98 |
+
elif "exceeded your current quota" in err_msg:
|
99 |
+
return pd.DataFrame([{"錯誤訊息": "您的 OpenAI 帳戶額度已用盡,請前往帳戶頁面檢查餘額。"}]), None
|
100 |
+
elif "Rate limit" in err_msg:
|
101 |
+
return pd.DataFrame([{"錯誤訊息": "OpenAI 請求頻率過高,請稍後再試"}]), None
|
102 |
+
else:
|
103 |
+
return pd.DataFrame([{"錯誤訊息": f"API Key 錯誤:{err_msg}"}]), None
|
104 |
+
|
105 |
def RAG_evaluation(uploaded_file, user_api_key):
|
106 |
try:
|
107 |
+
# 檢查 OpenAI API Key 是否有效
|
108 |
+
validation_result = validate_openai_key(user_api_key)
|
109 |
+
if validation_result:
|
110 |
+
return validation_result
|
111 |
+
|
112 |
os.environ["OPENAI_API_KEY"] = user_api_key
|
113 |
print("評估開始")
|
114 |
|
|
|
128 |
print("未合併題目:", missing["Question"].tolist())
|
129 |
if merged_df.empty:
|
130 |
return pd.DataFrame([{"錯誤訊息": "合併後無資料,請確認題目與 GT 是否對應"}]), None
|
131 |
+
|
132 |
llm_wrapper = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o-mini-2024-07-18"))
|
133 |
embedding_wrapper = LangchainEmbeddingsWrapper(OpenAIEmbeddings(model="text-embedding-3-large"))
|
134 |
+
|
135 |
batch_size = 10
|
136 |
records = []
|
137 |
for batch_start in tqdm(range(0, len(merged_df), batch_size), desc="RAGAS Batch Evaluating"):
|
|
|
156 |
result = evaluate(
|
157 |
dataset=dataset,
|
158 |
metrics=[
|
159 |
+
LLMContextPrecisionWithReference(), # context precision
|
160 |
+
LLMContextRecall(), # context recall
|
161 |
+
ContextEntityRecall(),
|
162 |
+
# NoiseSensitivity(),
|
163 |
+
Faithfulness(), # faithfulness
|
164 |
+
ResponseRelevancy(), # answer relevancy
|
165 |
+
SemanticSimilarity(), # semantic similarity
|
166 |
+
# FactualCorrectness()
|
167 |
],
|
168 |
llm=llm_wrapper,
|
169 |
embeddings=embedding_wrapper,
|
170 |
+
show_progress=True
|
171 |
)
|
172 |
|
173 |
result_df = result.to_pandas()
|
|
|
185 |
"Context Entity Recall": getattr(row, "context_entity_recall", None),
|
186 |
# "Noise Sensitivity": getattr(row, "noise_sensitivity_relevant", None)
|
187 |
}
|
188 |
+
|
189 |
for key in list(record.keys()):
|
190 |
val = record[key]
|
191 |
if isinstance(val, float) and not math.isfinite(val):
|
|
|
213 |
avg_row["Question"] = "Average"
|
214 |
score_df = pd.concat([score_df, pd.DataFrame([avg_row])], ignore_index=True)
|
215 |
|
216 |
+
original_name = os.path.basename(uploaded_file.name)
|
217 |
+
filename = os.path.splitext(original_name)[0]
|
218 |
+
output_path = f"{filename}_result.csv"
|
219 |
score_df.to_csv(output_path, index=False, encoding="utf-8-sig")
|
220 |
+
print("評估結果已儲存:", output_path)
|
221 |
|
222 |
return score_df, output_path
|
223 |
|
|
|
251 |
missing_questions = "\n".join(f"- {q}" for q in invalid_rows["Question"].tolist())
|
252 |
return pd.DataFrame([{"錯誤訊息": f"發現 {len(invalid_rows)} 筆資料中 Answer 或 Context 為空:\n{missing_questions}"}]), None
|
253 |
|
254 |
+
# check eval context
|
255 |
try:
|
256 |
for i, val in df["Context"].dropna().items():
|
257 |
if not isinstance(eval(val), list):
|
258 |
return pd.DataFrame([{"錯誤訊息": f"第 {i + 1} 筆 Context 欄格式錯誤,請確認其內容應為 list"}]), None
|
259 |
except Exception as e:
|
260 |
return pd.DataFrame([{"錯誤訊息": f"Context 欄格式解析錯誤,請確認其為有效的 list 格式,例如 ['A', 'B']:{str(e)}"}]), None
|
261 |
+
|
262 |
+
# 若上傳之待評估檔案無錯誤,執行評估
|
263 |
+
try:
|
264 |
+
return RAG_evaluation(file, key)
|
265 |
+
# 檢查 OpenAI API Key 是否有效
|
266 |
+
except Exception as e:
|
267 |
+
error_message = str(e)
|
268 |
+
return pd.DataFrame([{"錯誤訊息": f"系統錯誤:{error_message}"}]), None
|
269 |
except Exception as e:
|
270 |
+
return pd.DataFrame([{"錯誤訊息": f"評估失敗:{str(e)}"}]), None
|
271 |
|
272 |
# Gradio 介面
|
273 |
with gr.Blocks() as demo:
|
|
|
274 |
gr.Markdown("""
|
275 |
+
# 📐 RAG系統評估工具 (分流B)
|
276 |
+
|
277 |
+
### 📄 使用說明
|
278 |
+
- 請上傳您 RAG 系統產出的結果檔案(需包含欄位:Question、Context、Answer),並填入您的 OpenAI API Key,以進行評估。
|
279 |
+
- ⏳ 完整評估**通常需耗時 1 小時以上**,若無即時回應,請**耐心等候**,系統並未當機,謝謝您的理解。
|
280 |
+
|
281 |
+
### 🚦 分流措施
|
282 |
+
本工具部署於 Hugging Face Public Space,若同時有多位使用者使用,系統會將您的評估請求**排入佇列**。
|
283 |
+
為避免長時間等待,建議您**先僅送出 1 筆資料進行測試**,若進度條顯示之預估**等待時間超過 2 小時(7000 秒以上),可能是其他使用者正在使用**。
|
284 |
+
|
285 |
+
本頁為**分流 B**,您可以考慮改用其他分流或稍後再試,感謝您的耐心與配合!
|
286 |
+
- 🔁 [分流 A](https://huggingface.co/spaces/KSLab/RAG_Evaluator_A)
|
287 |
+
- 🔁 [分流 B](https://huggingface.co/spaces/KSLab/RAG_Evaluator_B)
|
288 |
+
- 🔁 [分流 C](https://huggingface.co/spaces/KSLab/RAG_Evaluator_C)
|
289 |
+
|
290 |
+
### 📢 系統公告
|
291 |
+
""")
|
292 |
+
announcement_display = gr.Markdown()
|
293 |
|
294 |
file_input = gr.File(label="上傳 Evaluation_Dataset.csv")
|
295 |
api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
|
|
|
298 |
result_output = gr.Dataframe(label="評估結果")
|
299 |
download_link = gr.File(label="下載評估結果(CSV)")
|
300 |
|
301 |
+
# 常見QA
|
302 |
+
gr.Markdown("""
|
303 |
+
---
|
304 |
+
### ❓ 常見問題 & 解答
|
305 |
+
""")
|
306 |
+
faq_display = gr.Markdown()
|
307 |
+
|
308 |
+
# 載入公告與 FAQ
|
309 |
+
def load_sheet():
|
310 |
+
return fetch_sheet_content()
|
311 |
+
demo.load(fn=load_sheet, inputs=[], outputs=[announcement_display, faq_display])
|
312 |
+
|
313 |
def wrapped_fn(file, key):
|
314 |
return RAG_evaluation(file, key)
|
315 |
|
316 |
submit_btn.click(
|
317 |
fn=check_csv_and_run,
|
318 |
inputs=[file_input, api_key_input],
|
319 |
+
outputs=[result_output, download_link],
|
320 |
)
|
321 |
|
322 |
demo.launch()
|