File size: 25,498 Bytes
ed96d7f c323b30 ed96d7f c323b30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
# %% File "lifgen-hook.py" by Gishnu Madhu with editing and feature input by KWR
# Usage:
# python lifgen-hook.py -i <source-file> -o <output.lif> -pid <identifier> -pt <initial prompt> -mpv <# of scored items>
# optional: -nt <# of tokens to search for text word> -bw <width of beam search, 1 for greedy>, -nw <# of words>
# -st <word/token to start from, 1-based> -a <mode in 0...4 of treating tokens as in-bounds or matching>
# -model <model to use> #not yet implemented---change model manually for now.
#
# Qwen requires a HuggingFace token, needs, "pip install transformers --upgrade" and does a new 4.2GB download
# DeepSeek does not need an access token---just hit enter to give the empty string
#
# Example:
# python lifgen-hook.py -i YaoJokic.txt -o YaoJokicm50.lif -pid YaoTestByDeepSeek -pt "Compare Yao Ming and Nikola Jokic in NBA basketball" -mpv 50
import gradio as gr
import math
import torch
import gc
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
import argparse
import sys
import re
from huggingface_hub import login
import os
from unidecode import unidecode
def capture_logits_hook(module, input_args, output):
"""
Hook function to capture the output of the lm_head layer.
The output might be a tensor or a tuple containing the tensor.
We are interested in the tensor containing logits.
"""
if isinstance(output, torch.Tensor):
logits = output
elif isinstance(output, tuple) and len(output) > 0 and isinstance(output[0], torch.Tensor):
# Common case for models returning more than just logits (e.g., past_key_values)
# We assume the first element is the logits tensor. Check model docs if unsure.
logits = output[0]
else:
# Cannot determine logits tensor, skip capture for this call
print(f"Warning: Hook captured unexpected output type: {type(output)}")
return
parser = argparse.ArgumentParser(
description="LifGenerator for CPU with Hugging face models with greedy decoding",
epilog="Help Documentation"
)
parser.add_argument(
"-input_file", "-i",
type=str,
help="The path to the input file."
)
parser.add_argument(
"-output_file", "-o",
type=str,
help="Name and path of output file"
)
parser.add_argument(
"-prompt_id", "-pid",
type=str,
help="Overall name of item"
)
parser.add_argument(
"-prompt_topic", "-pt",
type=str,
help="Topic given to LLM before stem words"
)
parser.add_argument(
"-multi_pv", "-mpv",
type=int,
help="Number of options to consider at each turn"
)
parser.add_argument(
"-num_words", "-nw",
type=int,
help="Cap on # of text words to iterate"
)
parser.add_argument(
"-num_tokens", "-nt",
type=int,
help="# of tokens to search for text word match"
)
parser.add_argument(
"-beam_width", "-bw",
type=int,
help="Width of beam search, 0 or 1 for greedy"
)
parser.add_argument(
"-alpha_mode", "-a",
type=int,
help="0 = all tokens, up thru 4 = alpha chars plus ' only"
)
parser.add_argument(
"-start_turn", "-st",
type=int,
help="1 by default, adds st-1 words to prompt"
)
parser.add_argument(
"-model", "-model",
type=str,
help="DS for DeepSeek, QWEN for Qwen"
)
args = parser.parse_args()
print("Welcome to the LifGenerator CPU script!")
print("This script generates lif files using a Hugging Face model and greedy decoding.")
print(f"Input file path: {args.input_file}")
print(f"Output file path: {args.output_file}")
INPUT_FILE = args.input_file
INPUT_FILE_STEM = INPUT_FILE.split('.')[0]
OUTPUT_FILE = args.output_file if args.output_file else (INPUT_FILE_STEM + ".lif")
PROMPT_ID = args.prompt_id if args.prompt_id else INPUT_FILE
PROMPT_TOPIC = args.prompt_topic if args.prompt_topic else INPUT_FILE
MULTI_PV = args.multi_pv if args.multi_pv else 100
NUM_WORDS = args.num_words if args.num_words else 10000
NUM_TOKENS = args.num_tokens if args.num_tokens else 10000
BEAM_WIDTH = args.beam_width if args.beam_width else 1
ALPHA_MODE = args.alpha_mode if args.alpha_mode else 0
START_TURN = args.start_turn if args.start_turn else 1
MODEL_TAG = args.model if args.model else "Qwen"
MINUS_INF = -1000.0
# main(INPUT_FILE, OUTPUT_FILE, PROMPT_ID, PROMPT_TOPIC, MULTI_PV, NUM_WORDS, NUM_TOKENS, BEAM_WIDTH, ALPHA_MODE, MODEL_TAG)
"""
Match if arg occurs in st surrounded by ends or non-alpha chars.
Intent is e.g. for "Karp" to match "Karp, R" but not "Karpov".
Whether "Karp" matches "Karp-Lipton" depends on whether hyphen is part of name.
Works even if arg itself has non-alpha characters.
Used for player and event names AND to identify tokens in command streams.
Uses C++ "isalpha" for local definition of names.
Prefer to override it to count underscore as a non-delimiting char.
Hyphen is always part of tokens but can be used to delimit place and person names,
so "Khanty" and "Khanty-Mansiysk" can both match "Khanty-Mansiysk" and
"Vachier" can match "Vachier-Lagrave".
With LLM tokens, this allows arg="abc" to match st=" abc" but not vice-versa.
However, if called with arg.strip() then vice-versa is fine.
If the token is @-@ then it will match "--" but NOT match a hyphenated word.
"""
def borderedMatch(arg, st, hyphenDelimits=False, underscoreDelimits=False):
fromPos = st.find(arg)
while fromPos != -1:
leftOK = (fromPos == 0)
if (fromPos > 0):
c = st[fromPos - 1]
if c == '-':
leftOK = hyphenDelimits
elif c == '_':
leftOK = underscoreDelimits
else:
leftOK = (not c.isalnum())
rightEdge = fromPos + len(arg)
rightOK = (rightEdge == len(st))
if (not rightOK):
d = st[rightEdge]
if d == '-':
rightOK = hyphenDelimits
elif d == '_':
rightOK = underscoreDelimits
else:
rightOK = (not d.isalnum())
if rightOK and leftOK:
return True
else: # try to find another match
fromPos = st.find(arg, fromPos + 1)
return False
def reprat(tok):
rep = unidecode(repr(tok))
return f"@{rep.replace('@','(at)')[1:-1]}@"
hf_token = input("Enter your Huggingface token")
# Or better:
# hf_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
if hf_token:
print("Logging in to Hugging Face Hub...")
login(token=hf_token)
else:
print("HF Token not found. Gated model download might fail.")
def main(INPUT_FILE, OUTPUT_FILE, PROMPT_ID, PROMPT_TOPIC, MULTI_PV, NUM_WORDS, NUM_TOKENS, BEAM_WIDTH, ALPHA_MODE,
MODEL_TAG):
# %% Constants and Configuration
# MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
# MODEL_NAME = "google/gemma-3-4b-it"
# MODEL_NAME = "Qwen/Qwen3-1.7B"
MODEL_NAME = "Qwen/Qwen3-0.6B"
# MODEL_NAME = "microsoft/Phi-4-mini-instruct"
#MODEL_NAME = "meta-llama/Llama-2-7b-hf"
#MODEL_NAME = input(f"Enter hugging face model name or press enter to default to [{MODEL_NAME}]: ") or MODEL_NAME
DEVICE = "cpu"
TORCH_DTYPE = torch.float32
DEPTH_RANGE = 1
# Ensure INPUT_FILE path is correct for your environment
# INPUT_FILE = 'feed.txt' # Assuming it's in the same directory or provide full path
# Create the input file if it doesn't exist for testing
if not os.path.exists(INPUT_FILE):
print(f"Warning: Input file '{INPUT_FILE}' not found. Creating a dummy file.")
with open(INPUT_FILE, 'w', encoding='utf-8') as f:
f.write("The quick brown fox jumps over the lazy dog")
# OUTPUT_FILE = "output.lif" # Changed output filename
MODEL_CONTEXT_WINDOW = 128_000 # Example context window, adjust if needed for the actual model
SAFETY_THRESHOLD = 2_000
MAX_INPUT_TOKENS = MODEL_CONTEXT_WINDOW - SAFETY_THRESHOLD # Max tokens per model *input slice*
# %% Load and Quantize Model & Tokenizer
print("Step 1: Loading model...")
# Add trust_remote_code=True if necessary for the specific model architecture
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=TORCH_DTYPE,
trust_remote_code=True, # Often needed for Qwen-based models
token=hf_token
).to(DEVICE)
print(f" Model loaded to {DEVICE}.")
# print("Step 2: Applying dynamic quantization for faster CPU inference...")
# Note: Quantization might slightly affect raw logit values compared to fp32/fp16
# model = torch.quantization.quantize_dynamic(
# model,
# {torch.nn.Linear},
# dtype=torch.qint8
# )
hook_handle = model.lm_head.register_forward_hook(capture_logits_hook)
##KWR: NEW
#model.generation_config.temperature=0
#model.generation_config.top_p=1.0
model.eval()
print(" Quantization complete. Model is ready for inference.\n")
print("Step 3: Loading tokenizer...")
# Add trust_remote_code=True if necessary for the specific model architecture
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True, token=hf_token)
if tokenizer.pad_token is None:
print(" Tokenizer missing pad token; setting pad_token = eos_token")
tokenizer.pad_token = tokenizer.eos_token
# Important: Ensure model config also reflects this if needed by generation args
if hasattr(model, 'config'):
model.config.pad_token_id = tokenizer.eos_token_id
print(" Tokenizer loaded and configured.\n")
# %% User Inputs
print("Step 4: Prompting user for inputs...")
# Use default values for easier testing
promptID = PROMPT_ID # input(" Enter Prompt ID [Default: VanityTestGreedy]: ") or "VanityTestGreedy"
# MultiPV_str = input(" Enter MultiPV (top logits to show) [Default: 5]: ") or "5"
MultiPV = MULTI_PV # int(MultiPV_str) # Now only controls how many top logits to display
# LegalNumberOfMove_str = input(" Enter Max Number of moves [Default: 10]: ") or "10"
LegalNumberOfMove = NUM_WORDS # int(LegalNumberOfMove_str)
# EngineID = f"DeepSeek R1 1.5B Qwen-Distil Greedy ({DEVICE.upper()})" # Updated EngineID
# EngineID = f"Qwen/Qwen3-1.7B"
EngineID = f"Qwen/Qwen3-0.6B"
# EngineID = f"Gemma-3-4b-it ({DEVICE.upper()})" # Indicate CPU in EngineID
Depth = 1
print(" User inputs captured.\n")
# %% Pre-tokenize entire relevant input sequence
print("Step 5: Pre-tokenizing input sequence...")
initial_prompt = "Complete successive parts of a sentence given one word at a time:"
initial_prompt_ids = tokenizer.encode(initial_prompt, add_special_tokens=False)
print(f" Reading words from {INPUT_FILE}...")
lines = []
try:
with open(INPUT_FILE, 'r', encoding='utf-8') as f:
# words_from_file = f.read().split()
lines = f.readlines()
words_from_file = "".join(line.replace('\n', '') for line in lines)
wordList = re.split(r'([a-zA-Z]+|\d+)', words_from_file)
wordList = [x for x in wordList if x != ' ' and x != '']
# print("The words are:\n", words_from_file)
numChars = 0
numTextTokens = len(wordList)
for word in wordList:
numChars += len(word)
avgTokenLength = round(numChars/numTextTokens, 4)
print(f"\nFound {numTextTokens} text word/tokens with average length {avgTokenLength}.\n")
except FileNotFoundError:
print(f"Error: Input file '{INPUT_FILE}' not found. Exiting.")
exit()
all_tokens = list(initial_prompt_ids)
word_end_indices = [len(initial_prompt_ids)] # Index *after* the last token of each word (or initial prompt)
processed_words = [] # Store the actual words processed
print(" Tokenizing words and building full sequence...")
for word in wordList:
word_tokens = tokenizer.encode(" " + word, add_special_tokens=False)
all_tokens.extend(word_tokens)
word_end_indices.append(len(all_tokens))
processed_words.append(word)
full_token_tensor = torch.tensor(all_tokens, dtype=torch.long).unsqueeze(0)
print(f" Pre-tokenized {len(processed_words)} words into a sequence of {len(all_tokens)} tokens.\n")
num_words_to_process = min(len(processed_words), LegalNumberOfMove) - (START_TURN - 1)
if num_words_to_process < len(processed_words) - (START_TURN - 1):
print(f" Will process the first {num_words_to_process} words due to NUM_WORDS limit.\n")
elif num_words_to_process == 0:
print(" Warning: No words to process based on input file or limits.\n")
# %% Build file header
print("Step 8: Preparing output file header...")
header_lines = [
f'[PromptID "{promptID}"]\n',
f'[EngineID "{EngineID}"]\n',
f'[MultiPV "{MultiPV}"]\n',
f'[DepthRange "1:1"]\n\n',
] + lines + [f'\n\n']
print(" Header prepared.\n")
# %% Main Generation Loop (Using Slicing & Greedy Decoding)
print("Step 9: Entering main generation loop (using pre-tokenized slicing and greedy decoding)...\n")
PrevEval = "n.a."
start_time = time.time()
current_time = start_time
numMatchedWords = 0
numMatchedChars = 0
if num_words_to_process > 0:
if (START_TURN > 1):
OUTPUT_FILE = OUTPUT_FILE.split('.')[0]+"from"+str(START_TURN)+".lif"
with open(OUTPUT_FILE, 'w', encoding='utf-8') as writer:
print(" Writing header to output file...")
writer.write(''.join(header_lines))
print(" Header written. Starting word-by-word prediction.\n")
for turnCount in range(START_TURN, START_TURN + num_words_to_process):
current_word = processed_words[turnCount - 1].strip()
# print(f"Turn {turnCount}: Predicting after word '{current_word}'")
slice_end_index = word_end_indices[turnCount - 1]
slice_start_index = max(0, slice_end_index - MAX_INPUT_TOKENS)
# print(f" 9.1/9.2: Context slice indices: [{slice_start_index}:{slice_end_index}]")
input_tensor = full_token_tensor[:, slice_start_index:slice_end_index]
current_input_len = input_tensor.shape[1]
# print(f" 9.3: Sliced input tensor shape: {input_tensor.shape}")
input_tensor_dev = input_tensor.to(DEVICE)
start_time_gen = time.time()
# 9.4 Generate next token using GREEDY DECODING
# print(f" 9.4: Running model.generate() with {current_input_len} input tokens (Greedy Decoding)...")
with torch.no_grad():
outputs = model.generate(
input_tensor_dev,
max_new_tokens=2,
min_new_tokens=2, # Explicitly require 1 new token
output_scores=True, # Get logits
return_dict_in_generate=True, # Get dict output
do_sample=False, # Disable sampling -> Use Greedy Decoding
pad_token_id=tokenizer.pad_token_id,
num_beams=BEAM_WIDTH,
num_return_sequences=BEAM_WIDTH,
# Removed num_beams and num_return_sequences
temperature=None,
top_k=None,
top_p=None,
#num_return_sequences=3
)
end_time_gen = time.time()
gen_duration = end_time_gen - start_time_gen
# print(f" Model generation took: {gen_duration:.4f} seconds")
if (turnCount < START_TURN):
print("Skipping turn", turnCount)
turnCount += 1
continue
# ----- UPDATED LOGIC for TopK Logits (Greedy Path) -----
# outputs.scores is a tuple of length max_new_tokens (1)
# Each element is a tensor of shape [batch_size, vocab_size] (batch_size is 1 here)
logits_for_step = outputs.scores[
0] # Logits for the single generated token step. Shape: [1, vocab_size]
# Get the logits from the single batch item (greedy path)
logits_for_greedy_path = logits_for_step[0] # Shape: [vocab_size]
# Get the top K (MultiPV) logits and their corresponding token IDs
# Note: The highest logit corresponds to the token chosen by greedy decoding
top_k_logits_values, top_k_logits_indices = torch.topk(
logits_for_greedy_path, k=MultiPV, dim=-1
)
# Convert results to lists
top_k_logits_values = top_k_logits_values.tolist()
top_k_logits_indices = top_k_logits_indices.tolist()
# Decode the top K tokens based on logits
top_k_tokens = [tokenizer.decode(tid) for tid in top_k_logits_indices]
"""
print(f"Top {MultiPV} Logits from greedy path (Token | Logit Value):")
for i in range(MultiPV):
token_str_cleaned = top_k_tokens[i].strip()
print(f" - '{token_str_cleaned}': {top_k_logits_values[i]:.4f} (ID: {top_k_logits_indices[i]})")
"""
# The token actually generated by greedy decoding
greedy_selected_token_id = outputs.sequences[0, -1].item() # Last token in the sequence
greedy_selected_token_str = tokenizer.decode(greedy_selected_token_id).strip()
# This will always match top_k_tokens[0] because do_sample=False
# print(f" (Greedy search selected token: '{greedy_selected_token_str}' ID: {greedy_selected_token_id})") # Optional confirmation
# ----- END of UPDATED LOGIC -----
# Derive metrics
modelToken = reprat(top_k_tokens[0]) # Equivalent to greedy_selected_token_str
#modelToken = modelToken.replace('@','(at)')
#modelToken = f"@{modelToken[1:-1]}@"
# modelEval is the highest logit value
modelEval = round(top_k_logits_values[0], 4)
# modelEval = round(float(modelEval)*100)
# NextEval = (f"{top_k_logits_values[1]:.4f}" if MultiPV > 1 else "n.a.")
# NextEval = round(float(NextEval)*100) if MultiPV > 1 and isinstance(top_k_logits_values[1], float) else "n.a."
print("Turn ", turnCount, " now matching text word ", current_word, " ...", end='', sep='')
topNUMTvals, topNUMTindices = torch.topk(logits_for_greedy_path, k=NUM_TOKENS, dim=-1)
topNUMTvalList = topNUMTvals.tolist()
topNUMTindList = topNUMTindices.tolist()
topNUMTtokens = [reprat(tokenizer.decode(tind)) for tind in topNUMTindList]
matchingTextToken = "@@"
textTokenIndex = 0
textTokenValue = 0
for tok in topNUMTtokens:
# if tok.find(current_word) != -1:
if current_word.find("Joki") >= 0 and tok.find("J") >= 0:
print("Why doesn't", current_word, "match", tok, "at index", textTokenIndex, "?")
if borderedMatch(current_word, tok, True, True):
matchingTextToken = tok #f"@{tok.replace('@','(at)')[1:-1]}@"
textTokenValue = topNUMTvalList[textTokenIndex]
if math.isinf(textTokenValue) and textTokenValue < 0.0:
textTokenValue = MINUS_INF
else:
textTokenValue = round(textTokenValue,4)
if textTokenIndex == 0:
print("***matches top model token", modelToken, "with score ", textTokenValue)
numMatchedWords += 1
numMatchedChars += len(current_word)
else:
print("found at index", textTokenIndex, "in token", matchingTextToken, "with score ", textTokenValue, "; top is ", modelToken, modelEval)
break
textTokenIndex += 1
if textTokenIndex >= NUM_TOKENS:
textTokenValue = round(topNUMTvalList[-1], 4)
print("not found, using bottom score", textTokenValue)
NextEval = textTokenValue
# print(
# f" 9.5: Top token (greedy choice): '{modelToken}' (Evalution: {modelEval})|Logit value : {top_k_logits_values[0]:.4f}| Next best Eval: {NextEval} | Logit ")
# Build lines for this turn
current_stem = initial_prompt + " " + " ".join(processed_words[:turnCount])
lines = [
f'[PID "{promptID}"]\n',
f'[EID "{MODEL_NAME}"]\n',
f'[Turn "{turnCount}-w"]\n',
f'[TextToken "@{current_word}@"]\n',
f'[ModelToken "{modelToken}"]\n', # The model's greedy prediction
f'[TextTokenIndex "{textTokenIndex}"]\n'
f'[TextTokenValue "{textTokenValue}"]\n'
f'[Eval "{modelEval}"]\n', # The highest raw logit value
f'[PrevEval "{PrevEval}"]\n',
f'[NextEval "{NextEval}"]\n', # The second highest raw logit value
f'[Depth "{Depth}"]\n',
f'[STEM "{current_stem}"]\n',
f'[NumLegalMoves "{MultiPV}"]\n',
"---------------\n",
f"{DEPTH_RANGE}\n",
"---------------\n"
]
for token_str, logit_val in zip(top_k_tokens, top_k_logits_values):
rep = reprat(token_str) #.replace('@', '(at)') # has ' ' or " " around it
# rep = f"@{rep[1:-1]}@" # now has @ ... @ around it
lines.append(f"{rep} {logit_val:.4f}\n")
lines.append(
"===========================================================================================================\n")
lines.append(f"[Comments]\n")
lines.append(f"[EndMove]\n\n")
# print(" Lines built.")
# 9.7 Write to file
# print(" 9.7: Writing lines to output file...")
writer.write(''.join(lines))
# print(" Write complete.\n")
# 9.8 Update state
PrevEval = modelEval
# 9.9 Status update
status_interval = min(100, num_words_to_process // 2 if num_words_to_process >= 10 else 10)
if turnCount % status_interval == 0 or turnCount == num_words_to_process:
last_time = current_time
current_time = time.time()
elapsed = current_time - start_time
elapsedLast = current_time - last_time
rate = (turnCount - 1) / elapsed if elapsed > 0 else 0
rateLast = 100.0 / elapsedLast if elapsedLast > 0 else 0
print()
print(f"Processed Turn {turnCount}. Rate: {rate:.2f} words/sec., last 100 rate: {rateLast:.2f}")
#end-for
averageCharsMatched = 0 if numMatchedWords == 0 else round(numMatchedChars/numMatchedWords, 4)
matchPercent = 0.0 if numTextTokens == 0 else round(100.0*numMatchedWords/numTextTokens, 2)
matchPercentStr = f"({matchPercent}%)"
print("Done: matched", numMatchedWords, matchPercentStr, "tokens of average length", averageCharsMatched)
print("from", numTextTokens, "tokens of average length", avgTokenLength)
else:
print("Skipping main generation loop as there are no words to process.")
hook_handle.remove()
print("Removed forward hook.")
# %% Final Stats
print("Step 10: Reporting final statistics...")
total_time = time.time() - start_time
avg_rate = (num_words_to_process / total_time) if total_time > 0 and num_words_to_process > 0 else 0
print(f" Total turns processed: {num_words_to_process}")
print(f" Total time: {total_time:.2f} seconds")
print(f" Average speed: {avg_rate:.2f} words/second")
print(f" Output written to {OUTPUT_FILE}")
# Optional: Clean up memory
print("\nCleaning up resources...")
del model
del tokenizer
del full_token_tensor
if 'outputs' in locals():
del outputs
if 'input_tensor' in locals():
del input_tensor
if 'input_tensor_dev' in locals():
del input_tensor_dev
gc.collect()
if DEVICE == 'cuda':
print("Emptying CUDA cache...")
torch.cuda.empty_cache()
print("\nScript finished.")
### RUN MAIN ####
main(INPUT_FILE, OUTPUT_FILE, PROMPT_ID, PROMPT_TOPIC, MULTI_PV, NUM_WORDS, NUM_TOKENS, BEAM_WIDTH, ALPHA_MODE,
MODEL_TAG)
demo = gr.Interface(fn=main, inputs="text", outputs="text")
demo.launch()
|