KZTech commited on
Commit
acb8d17
Β·
verified Β·
1 Parent(s): 8ac78c8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import whisper
3
+ import gradio as gr
4
+ import requests
5
+ from gtts import gTTS
6
+
7
+ # Load Whisper model
8
+ model = whisper.load_model("base")
9
+
10
+ # Read Groq API Key from environment variable
11
+ GROQ_API_KEY = os.getenv("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")
12
+ client= GROQ(API_KEY=GROQ_API_KEY)
13
+ # Main function: audio β†’ text β†’ LLM β†’ speech
14
+ def transcribe_and_respond(audio_file):
15
+ # 1. Transcribe audio
16
+ result = model.transcribe(audio_file)
17
+ user_text = result["text"]
18
+
19
+ # 2. Query Groq LLM
20
+ headers = {
21
+ "Content-Type": "application/json",
22
+ "Authorization": f"Bearer {GROQ_API_KEY}"
23
+ }
24
+
25
+ data = {
26
+ "model": "llama-3.3-70b-versatile",
27
+ "messages": [{"role": "user", "content": user_text}]
28
+ }
29
+
30
+ response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
31
+
32
+ if response.status_code == 200:
33
+ output_text = response.json()['choices'][0]['message']['content']
34
+ else:
35
+ output_text = f"Error from Groq API: {response.status_code} - {response.text}"
36
+
37
+ # 3. Convert to speech
38
+ tts = gTTS(text=output_text, lang='en')
39
+ tts_path = "response.mp3"
40
+ tts.save(tts_path)
41
+
42
+ return output_text, tts_path
43
+
44
+ # Gradio UI
45
+ iface = gr.Interface(
46
+ fn=transcribe_and_respond,
47
+ inputs=gr.Audio(type="filepath", label="πŸŽ™οΈ Speak"),
48
+ outputs=[gr.Textbox(label="🧠 LLM Reply"), gr.Audio(label="πŸ”Š Spoken Response")],
49
+ title="Voice Chatbot with Whisper + Groq + gTTS",
50
+ description="Click to record β†’ Get LLM reply β†’ Hear it spoken back"
51
+ )
52
+
53
+ if __name__ == "__main__":
54
+ iface.launch()