import os import whisper import gradio as gr import requests from gtts import gTTS # Load Whisper model model = whisper.load_model("base") # Read Groq API Key from environment variable GROQ_API_KEY = os.getenv("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") client= GROQ(API_KEY=GROQ_API_KEY) # Main function: audio → text → LLM → speech def transcribe_and_respond(audio_file): # 1. Transcribe audio result = model.transcribe(audio_file) user_text = result["text"] # 2. Query Groq LLM headers = { "Content-Type": "application/json", "Authorization": f"Bearer {GROQ_API_KEY}" } data = { "model": "llama-3.3-70b-versatile", "messages": [{"role": "user", "content": user_text}] } response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data) if response.status_code == 200: output_text = response.json()['choices'][0]['message']['content'] else: output_text = f"Error from Groq API: {response.status_code} - {response.text}" # 3. Convert to speech tts = gTTS(text=output_text, lang='en') tts_path = "response.mp3" tts.save(tts_path) return output_text, tts_path # Gradio UI iface = gr.Interface( fn=transcribe_and_respond, inputs=gr.Audio(type="filepath", label="🎙️ Speak"), outputs=[gr.Textbox(label="🧠 LLM Reply"), gr.Audio(label="🔊 Spoken Response")], title="Voice Chatbot with Whisper + Groq + gTTS", description="Click to record → Get LLM reply → Hear it spoken back" ) if __name__ == "__main__": iface.launch()