import os import whisper import gradio as gr import requests from gtts import gTTS # Load Whisper model (base is a good balance of speed + quality) model = whisper.load_model("base") # Put your actual Groq API key here GROQ_API_KEY = "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" def transcribe_and_respond(audio_file): # 1. Transcribe audio to text result = model.transcribe(audio_file) user_text = result["text"] # 2. Send to Groq LLM (LLaMA 3.3 70B) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {GROQ_API_KEY}" } data = { "model": "llama-3.3-70b-versatile", "messages": [{"role": "user", "content": user_text}] } response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data) if response.status_code == 200: output_text = response.json()['choices'][0]['message']['content'] else: output_text = f"Error: {response.status_code} - {response.text}" # 3. Convert reply to speech tts = gTTS(text=output_text, lang='en') tts_path = "response.mp3" tts.save(tts_path) return output_text, tts_path # Gradio interface iface = gr.Interface( fn=transcribe_and_respond, inputs=gr.Audio(type="filepath", label="🎙️ Speak"), outputs=[gr.Textbox(label="🧠 LLM Reply"), gr.Audio(label="🔊 Spoken Response")], title="Voice-to-Voice Chatbot (Whisper + Groq + gTTS)", description="Record your voice, get a reply from LLaMA 3.3 70B, and hear it spoken back!" ) if __name__ == "__main__": iface.launch()