Update app-gradcam.py
Browse files- app-gradcam.py +70 -70
app-gradcam.py
CHANGED
|
@@ -1,71 +1,71 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import tensorflow as tf
|
| 3 |
-
import numpy as np
|
| 4 |
-
import pandas as pd
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
import cv2
|
| 7 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
|
| 8 |
-
|
| 9 |
-
class GradCAM(object):
|
| 10 |
-
|
| 11 |
-
def __init__(self, model, alpha=0.8, beta=0.3):
|
| 12 |
-
self.model = model
|
| 13 |
-
self.alpha = alpha
|
| 14 |
-
self.beta = beta
|
| 15 |
-
|
| 16 |
-
def apply_heatmap(self, heatmap, image):
|
| 17 |
-
heatmap = cv2.resize(heatmap, image.shape[:-1])
|
| 18 |
-
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
| 19 |
-
superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha,
|
| 20 |
-
np.array(heatmap).astype(np.float32), self.beta, 0)
|
| 21 |
-
return np.array(superimposed_img).astype(np.uint8)
|
| 22 |
-
|
| 23 |
-
def gradCAM(self, x_test=None, name='block5_conv3', index_class=0):
|
| 24 |
-
with tf.GradientTape() as tape:
|
| 25 |
-
last_conv_layer = self.model.get_layer(name)
|
| 26 |
-
grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output])
|
| 27 |
-
model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0))
|
| 28 |
-
class_out = model_out[:, index_class]
|
| 29 |
-
grads = tape.gradient(class_out, last_conv_layer)
|
| 30 |
-
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
| 31 |
-
last_conv_layer = last_conv_layer[0]
|
| 32 |
-
heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis]
|
| 33 |
-
heatmap = tf.squeeze(heatmap)
|
| 34 |
-
heatmap = np.maximum(heatmap, 0)
|
| 35 |
-
heatmap /= np.max(heatmap)
|
| 36 |
-
heatmap = np.array(heatmap)
|
| 37 |
-
return self.apply_heatmap(heatmap, x_test)
|
| 38 |
-
|
| 39 |
-
# Streamlit app
|
| 40 |
-
st.title("Grad-CAM Visualization")
|
| 41 |
-
|
| 42 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 43 |
-
|
| 44 |
-
if uploaded_file is not None:
|
| 45 |
-
try:
|
| 46 |
-
# Load the uploaded image
|
| 47 |
-
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 48 |
-
img = cv2.imdecode(file_bytes, 1)
|
| 49 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 50 |
-
|
| 51 |
-
st.image(img, caption='Uploaded Image.', use_column_width=True)
|
| 52 |
-
|
| 53 |
-
# Preprocess the image for the model (assuming the model expects 224x224 images)
|
| 54 |
-
img_resized = cv2.resize(img, (224, 224))
|
| 55 |
-
img_array = np.expand_dims(img_resized, axis=0)
|
| 56 |
-
|
| 57 |
-
# Load the model
|
| 58 |
-
model_path = '
|
| 59 |
-
model = tf.keras.models.load_model(model_path)
|
| 60 |
-
|
| 61 |
-
# Initialize GradCAM
|
| 62 |
-
grad_cam = GradCAM(model)
|
| 63 |
-
|
| 64 |
-
# Compute GradCAM heatmap
|
| 65 |
-
heatmap_img = grad_cam.gradCAM(img_array[0])
|
| 66 |
-
|
| 67 |
-
# Display the GradCAM heatmap
|
| 68 |
-
st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True)
|
| 69 |
-
|
| 70 |
-
except Exception as e:
|
| 71 |
st.error(f"Error: {e}")
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import cv2
|
| 7 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
|
| 8 |
+
|
| 9 |
+
class GradCAM(object):
|
| 10 |
+
|
| 11 |
+
def __init__(self, model, alpha=0.8, beta=0.3):
|
| 12 |
+
self.model = model
|
| 13 |
+
self.alpha = alpha
|
| 14 |
+
self.beta = beta
|
| 15 |
+
|
| 16 |
+
def apply_heatmap(self, heatmap, image):
|
| 17 |
+
heatmap = cv2.resize(heatmap, image.shape[:-1])
|
| 18 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
| 19 |
+
superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha,
|
| 20 |
+
np.array(heatmap).astype(np.float32), self.beta, 0)
|
| 21 |
+
return np.array(superimposed_img).astype(np.uint8)
|
| 22 |
+
|
| 23 |
+
def gradCAM(self, x_test=None, name='block5_conv3', index_class=0):
|
| 24 |
+
with tf.GradientTape() as tape:
|
| 25 |
+
last_conv_layer = self.model.get_layer(name)
|
| 26 |
+
grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output])
|
| 27 |
+
model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0))
|
| 28 |
+
class_out = model_out[:, index_class]
|
| 29 |
+
grads = tape.gradient(class_out, last_conv_layer)
|
| 30 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
| 31 |
+
last_conv_layer = last_conv_layer[0]
|
| 32 |
+
heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis]
|
| 33 |
+
heatmap = tf.squeeze(heatmap)
|
| 34 |
+
heatmap = np.maximum(heatmap, 0)
|
| 35 |
+
heatmap /= np.max(heatmap)
|
| 36 |
+
heatmap = np.array(heatmap)
|
| 37 |
+
return self.apply_heatmap(heatmap, x_test)
|
| 38 |
+
|
| 39 |
+
# Streamlit app
|
| 40 |
+
st.title("Grad-CAM Visualization")
|
| 41 |
+
|
| 42 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 43 |
+
|
| 44 |
+
if uploaded_file is not None:
|
| 45 |
+
try:
|
| 46 |
+
# Load the uploaded image
|
| 47 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 48 |
+
img = cv2.imdecode(file_bytes, 1)
|
| 49 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 50 |
+
|
| 51 |
+
st.image(img, caption='Uploaded Image.', use_column_width=True)
|
| 52 |
+
|
| 53 |
+
# Preprocess the image for the model (assuming the model expects 224x224 images)
|
| 54 |
+
img_resized = cv2.resize(img, (224, 224))
|
| 55 |
+
img_array = np.expand_dims(img_resized, axis=0)
|
| 56 |
+
|
| 57 |
+
# Load the model
|
| 58 |
+
model_path = 'model_renamed.h5' # Update this path to your model's path
|
| 59 |
+
model = tf.keras.models.load_model(model_path)
|
| 60 |
+
|
| 61 |
+
# Initialize GradCAM
|
| 62 |
+
grad_cam = GradCAM(model)
|
| 63 |
+
|
| 64 |
+
# Compute GradCAM heatmap
|
| 65 |
+
heatmap_img = grad_cam.gradCAM(img_array[0])
|
| 66 |
+
|
| 67 |
+
# Display the GradCAM heatmap
|
| 68 |
+
st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True)
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
st.error(f"Error: {e}")
|